当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OM∥C...
题目
题型:不详难度:来源:
已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OMCD分别交BC与BP于点M、N.下列结论:
①S四边形ABCD=
1
2
AB•CD;
②AD=AB;
③AD=ON;
④AB为过O、C、D三点的圆的切线.
其中正确的个数有(  )
A.1个B.2个C.3个D.4个
答案
连接OD、AP,
∵DA、DP、BC分别是圆的切线,切点分别是A、P、B,
∴DA=DP,CP=CB,∠A=90°=∠B=∠DPO,
∴AD+BC=DP+CP=CD,
∴S四边形ABCD=
1
2
(AD+BC)•AB=
1
2
AB•CD,∴①正确;
∵AD=DP<OD<AB,∴②错误;
∵AB是圆的直径,
∴∠APB=90°,
∵DP=AD,AO=OP,
∴D、O在AP的垂直平分线上,
∴OD⊥AP,
∵∠DPO=∠APB=90°,
∴∠OPB=∠DPA=∠DOP,
∵OMCD,
∴∠POM=∠DPO=90°,
在△DPO和△NOP中
∠PON=∠DPO,OP=OP,∠DOP=∠OPN,
∴△DPO≌△NOP,
∴ON=DP=AD,∴③正确;
∵AP⊥OD,OA=OP,
∴∠AOD=∠POD,
同理∠BOC=∠POC,
∴∠DOC=
1
2
×180°=90°,
∴△CDO的外接圆的直径是CD,
∵∠A=∠B=90°,
取CD的中点Q,连接OQ,
∵OA=OB,
∴ADOQBC,
∴∠AOQ=90°,
∴④正确.
故选C.
核心考点
试题【已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OM∥C】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
如图,PE是⊙O的切线,E为切点,PAB、PCD是割线,AB=35,CD=50,AC:DB=1:2,则PA=______.
题型:不详难度:| 查看答案
如图,AB为⊙O的直径,C是⊙O上的一点,D在AB的延长线上,∠DCB=∠A.
(1)求证:CD是⊙O的切线;
(2)若BD=2OB,CD=4,求⊙O的半径.
题型:不详难度:| 查看答案
2006年6月某工厂将地处A,B两地的两个小工厂合成一个大厂,为了方便A,B两地职工的联系,企业准备在相距2km的A,B两地之间修一条笔直的公路(即图中的线段AB),经测量,在A地的北偏东60°方向,B地的西偏北45°方向的C处有一半径为0.7km的公园,则修筑的这条公路会不会穿过公园?为什么?
题型:不详难度:| 查看答案
如图,P是半径为4的⊙O外一点,PA切⊙O于A,PB切⊙O于B,∠APB=60°.
求:夹在劣弧AB及,PB之间的阴影部分的面积.
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,BC切⊙O于点B,AD的延长线交BC于点E,若∠C=25°,则∠A=______度.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.