当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D,求证:BD是⊙O的切线....
题目
题型:不详难度:来源:
如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D,求证:BD是⊙O的切线.
答案
证明:∵∠BAD=30°,OA=OD,
∴∠ADO=∠BAD=30°,
∴∠BOD=60°.
在△BOD中,∠B=30°,∠BOD=60°,
∴∠BDO=90°.
∴BD是⊙O的切线.
核心考点
试题【如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D,求证:BD是⊙O的切线.】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交X轴于D点,过D点作DF⊥AE于F.
(1)求OA和OC的长;
(2)求证:OE=AE;
(3)求证:DF是⊙O′的切线;
(4)在边BC上是否存在除E点以外的P点,使△AOP是等腰三角形?如果存在,请写出P点的坐标;如果不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.