当前位置:初中试题 > 数学试题 > 圆的认识 > 在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于F. (1) 求OA,OC...
题目
题型:不详难度:来源:
在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于F.

(1) 求OA,OC的长;
(2) 求证:DF为⊙O′的切线;
(3)由已知可得,△AOE是等腰三角形.那么在直线BC上是否存在除点E以外的点P,使△AOP也是等腰三角形?如果存在,请你证明点P与⊙O′的位置关系,如果不存在,请说明理由.
答案
(1)解:在矩形ABCO中,设OC=x,则OA=x+2,
依题意得,x(x+2)=15.
解得(不合题意,舍去)
∴ OC="3" ,OA="5" .    …………………………………1分
(2)证明:连结O′D,在矩形OABC中,

∵ OC=AB,∠OCB=∠ABC,E为BC的中点,
∴△OCE≌△ABE .
∴ EO="EA" .
∴∠EOA=∠EAO .
又∵O′O= O′D,
∴ ∠O′DO=∠EOA=∠EAO.
∴ O′D∥EA .
∵ DF⊥AE,
∴ DF⊥O′D .
又∵点D在⊙O′上,O′D为⊙O′的半径,
∴ DF为⊙O′的切线.    …………………………………3分
(3)答:存在 .
当OA=AP时,以点A为圆心,以AO为半径画弧,交BC于点两点,
则△AO、△AO均为等腰三角形.
证明:过点作H⊥OA于点H,则H=OC=3,
∵ A=OA=5,
∴ AH=4,OH=1.
(1,3).
(1,3)在⊙O′的弦CE上,且不与C、E重合,
∴ 点在⊙O′内.
类似可求(9,3).
显然,点在点E的右侧,
∴点在⊙O′外.
当OA=OP时,同①可求得,(4,3),(-4,3).
显然,点在点E的右侧,点在点C的左侧
因此,在直线BC上,除了E点外,还存在点,它们分别使△AOP为等腰三角形,且点在⊙O′内,点在⊙O′外.     …………7分
解析

核心考点
试题【在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于F. (1) 求OA,OC】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C.

(1)求证:AD=DC;
(2)过D作⊙O的切线交BC于E,若DE=2,CE=1,求⊙O的半径.
题型:不详难度:| 查看答案
一个钢管放在V形架内,图3是其截面图,O为钢管的圆心.如果钢管的半径为25 Cm,∠MPN = 60°,则OP 的长为
A.50 CmB.25CmC.CmD.50Cm

题型:不详难度:| 查看答案
阅读材料:如图23—1,的周长为,面积为S,内切圆的半径为,探究与S、之间的关系.连结





解决问题

(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形存在内切圆(与各边都相切的圆),如图23—2且面积为,各边长分别为,试推导四边形的内切圆半径公式;
(3)若一个边形(为不小于3的整数)存在内切圆,且面积为,各边长分别为,合理猜想其内切圆半径公式(不需说明理由).
题型:不详难度:| 查看答案
已知的半径为,点到圆心的距离为。则的位置关系是( )
A.点B.点C.点D.不能确定

题型:不详难度:| 查看答案
已知圆锥的母线长为 9cm,底面圆的直径为 10cm, 则该圆锥的侧面积为__cm2 .(结果保留)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.