当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF=3,则内切圆的半径r         ....
题目
题型:不详难度:来源:
如图,已知⊙O是△ABC的内切圆,切点为DEF,如果AE=2,CD=1,BF=3,则内切圆的半径r         
答案
1
解析
根据切线长定理得出AF=AE,EC=CD,DB=BF,进而得出△ABC是直角三角形,再利用直角三角形内切圆半径求法得出内切圆半径即可.
解:∵⊙O是△ABC的内切圆,切点为D、E、F,
∴AF=AE,EC=CD,DB=BF,
∵AE=2,CD=1,BF=3,
∴AF=2,EC=1,BD=3,
∴AB=BF+AF=3+2=5,BC=BD+DC=4,AC=AE+EC=3,
∴△ABC是直角三角形,
∴内切圆的半径r==1,
故答案为:1.
核心考点
试题【如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF=3,则内切圆的半径r         .】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
(本题8分)如图,是⊙的切线,为切点,是⊙的弦,过 作于点.若
求:(1)⊙的半径;(2)AC的值.
题型:不详难度:| 查看答案
(本题10分)已知AB为⊙O的直径,PAPC是⊙O的切线,AC为切点,∠BAC=30°.①求∠P的度数;②若AB=2,求PA的长.
题型:不详难度:| 查看答案
(本题10分)如图,P是双曲线的一个分支上的一点,以点P为圆心,1个单位长度为半径作⊙P,设点P的坐标为().
(1)求当为何值时,⊙P与直线相切,并求点P的坐标.
(2)直接写出当为何值时,⊙P与直线相交、相离.

题型:不详难度:| 查看答案
(本题10分)如图,⊙O的直径AB=4,点PAB延长线上的一点,过点P作⊙O的切线,切点为C,连结AC
(1)若∠CPA=30°,求PC的长;
(2)若点PAB的延长线上运动,∠CPA的平分线交AC于点M.你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,请求出∠CMP的值.
题型:不详难度:| 查看答案
(本题12分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OAOC大2.EBC的中点,以OE为直径的⊙Gx轴于D点,过点DDFAE于点F
(1)求OAOC的长;
(2)求证:DF为⊙G的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.那么,直线BC上是否存在除点E以外的点P,使△AOP也是等腰三角形,如果存在,请直接写出所有符合题意的点P坐标.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.