当前位置:初中试题 > 数学试题 > 圆的认识 > (本小题满分10分)如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,...
题目
题型:不详难度:来源:
(本小题满分10分)
如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中半⊙P与数轴相切于点A,且此时△MPA为等边三角形.
解答下列问题:(各小问结果保留π)
(1)位置Ⅰ中的点O到直线MN的距离为   
位置Ⅱ中的半⊙P与数轴的位置关系是     
(2)位置Ⅲ中的圆心P在数轴上表示的数为   
(3)求OA的长.
答案


解析
 略
核心考点
试题【(本小题满分10分)如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
已知⊙与⊙两圆内含,,⊙的半径为5,那么⊙的半径的取值范围是­­­­­­­­­­­­       
题型:不详难度:| 查看答案
如图,已知⊙O是△ABC的内切圆,且,则         °.
题型:不详难度:| 查看答案
如图,在矩形ABCD中,AB=5,BC=12,⊙O1和⊙O2分别是△ABC和△ADC的内切圆,则O1O2      .
题型:不详难度:| 查看答案
如图,在直径为AB的一块半圆形土地上,画出一块三角形区域,使三角形的一边为AB,顶点C在半圆上,其它两边长分别为6cm和8cm,现要建造一个内接于△ABC的矩形水池DEFN,其中DE在AB上,如图所示的设计方案是使AC=8cm,BC=6cm。
(1)求△ABC中AB边上的高h;
(2)设DN=x,当x取何值时,水池DEFN的面积最大?
(3)实际施工时,发现在AB上距B点1.85m处有一棵大树,则这棵大树是否位于最大矩形的边上?如果在,为了保护大树,请你设计出另外的方案,使内接于满足条件的三角形中建最大矩形水池能避开大树。
题型:不详难度:| 查看答案
下列说法正确的是(  )
A.弦是直径B.平分弦的直径垂直弦
C.过三点A,B,C的圆有且只有一个D.三角形的外心是三角形三边中垂线的交点。

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.