当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0...
题目
题型:不详难度:来源:
如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0G.
小题1:判断0G与CD的位置关系,写出你的结论并证明;
小题2:求证:AE=BF;
小题3:若OG·DE=3(2-),求⊙O的面积.
答案

小题1:OG⊥CD
小题2:见解析。
小题3:6π
解析
本题考查圆的相关内容。如相切等。本题利用等腰三角形的性质证明Rt△ACE≌Rt△BCF然后利用相似和全等求解相关问题。
(1)猜想:OG⊥CD.
证明:如图,连结OC、OD,∵OC=OD,G是CD的中点,
∴由等腰三角形的性质,有CG⊥CD. (3分)
(2)证明: ∵AB是⊙O的直径, ∴∠ACB=90°.
在Rt△ACE和Rt△BCF中
∠CAE=∠CBF, ∠ACE=∠BCF=90°,AC=BC.
∴Rt△ACE≌Rt△BCF
∴AE="BF." (7分)
(3)解:过点O作BD的垂线,垂足为H.则H为BD的中点.
∴OH=AD,即AD=2OH.
又∠CAD=∠BAD ,∴CD="BD," ∴OH=OG.
在Rt△BDE和Rt△ADB中,∠DBE=∠DAC=∠BAD,
∴Rt△BDE∽Rt△ADB, ∴BD=AD·DE=2OG·DE=6(2-)
又BD="FD," ∴BF="2BD." ∴BF=4BD=24(2-).……①
设AC=x,则BC=x,AB=x.
∵AD是∠BAC的平分线,∴∠FAD=∠BAD.
在Rt△ABD和Rt△AFD中,∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD,
∴Rt△ABD≌Rt△AFD.∴AF=AB=x-x=(-1)x
在Rt△BCF中BF=BC+CF=x+[(-1)x] =2(2-)x……②
由①、②解得x=2或-2(舍去).
∴AB=x=·2=2.
∴S=π·(2)=6π
核心考点
试题【如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
如图,AB是⊙O的直径,若AC=4,∠D=60°,则AB=     
题型:不详难度:| 查看答案
如图,△ABC内接于⊙O,D是AB边上一点,AB=6,AC=BD=4,P是的中点,连结PA、PB、PC、PD.

小题1:求证:PD=PA;
小题2:若cos∠PCB=,求PA的长.
题型:不详难度:| 查看答案
如图(2),在直角坐标系中,四边形OABC为正方形,顶点A、C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为(    )

A、(4,5)   B、(-5,4)  C、(-4,6)  D、(-4,5)
题型:不详难度:| 查看答案
如图(7),已知△ABC是⊙O的内接三角形,AB=AC,AD=AE,AE的延长线与BC的延长线交于点F.求证:

小题1:∠DAB=∠CAE
小题2:
题型:不详难度:| 查看答案
如图(11),梯形ABCD,AB∥CD ,AB=2cm,且∠OAB=30°,∠OBA=45°,梯形ABCD内部的⊙O分别切四边于E,F,M,N,

小题1:求出⊙O的半径OM的长度
小题2:求出梯形ABCD的周长.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.