当前位置:初中试题 > 数学试题 > 圆的认识 > 平面内有四个点A、O、B、C,其中∠AOB=1200,∠ACB=600,AO=BO=2,则满足题意的OC长度为整数的值可以是       ....
题目
题型:不详难度:来源:
平面内有四个点A、O、B、C,其中∠AOB=1200,∠ACB=600,AO=BO=2,则满足题意的OC长度为整数的值可以是       
答案
2,3,4
解析

试题分析:考虑到∠AOB=1200,∠ACB=600,AO=BO=2,分两种情况探究:
情况1,如图1,作△AOB,使∠AOB=1200, AO=BO=2,以点O 为圆心, 2为半径画圆,当点C在优弧AB上时,根据同弧所圆周角是圆心角一半,总有∠ACB=∠AOB=600,此时,OC= AO=BO=2。

情况2,如图2,作菱形AOMB,使∠AOB=1200, AO=BO=AM=BM=2,以点M为圆心, 2为半径画圆,当点C在优弧AB上时,根据圆内接四边形对角互补,总有∠ACB=1800-∠AOB=600。此时,OC的最大值是OC为⊙M的直径4时,所以,2<OC≤4,整数有3,4。

综上所述,满足题意的OC长度为整数的值可以是2,3,4。
核心考点
试题【平面内有四个点A、O、B、C,其中∠AOB=1200,∠ACB=600,AO=BO=2,则满足题意的OC长度为整数的值可以是       .】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=1200.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.

(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)
(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)
(参考数据:sin60°=,cos60°=,tan60°=≈26.851,可使用科学计算器)
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.

(1)证明PA是⊙O的切线;
(2)求点B的坐标;
(3)求直线AB的解析式.
题型:不详难度:| 查看答案
如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为

A.4      B.     C.6     D.
题型:不详难度:| 查看答案
如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为       cm.

题型:不详难度:| 查看答案
将边长为8cm的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是     cm。

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.