当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说...
题目
题型:不详难度:来源:
如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.

(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.
答案
(1)详见试题解析; (2)
解析

试题分析:(1)AF为为圆O的切线,理由为:练级OC,由PC为圆O的切线,利用切线的性质得到CP垂直于OC,由OF与BC平行,利用两直线平行内错角相等,同位角相等,分别得到两对角相等,根据OB=OC,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OA,OF为公共边,利用SAS得出三角形AOF与三角形COF全等,由全等三角形的对应角相等及垂直定义得到AF垂直于OA,即可得证;
(2)由AF垂直于OA,在直角三角形AOF中,由OA与AF的长,利用勾股定理求出OF的长,而OA=OC,OF为角平分线,利用三线合一得到E为AC中点,OE垂直于AC,利用面积法求出AE的长,即可确定出AC的长.
试题解析:(1)AF为圆O的切线,理由为:
连接OC,
∵PC为圆O切线,
∴CP⊥OC,
∴∠OCP=90°,
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB,
∵OC=OB,
∴∠OCB=∠B,
∴∠AOF=∠COF,
∵在△AOF和△COF中,

∴△AOF≌△COF(SAS),
∴∠OAF=∠OCF=90°,
则AF为圆O的切线;
(2)∵△AOF≌△COF,
∴∠AOF=∠COF,
∵OA=OC,
∴E为AC中点,即AE=CE=AC,OE⊥AC,
∵OA⊥AF,
∴在Rt△AOF中,OA=4,AF=3,
根据勾股定理得:OF=5,
∵SAOF=OA•AF=•OF•AE,
∴AE=
则AC=2AE=

核心考点
试题【如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
已知扇形AOB的半径为6㎝,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为(   )
A.B.C.D.

题型:不详难度:| 查看答案
如图,的直径,弦于点,连结,若,则OE=(  )
A.1B.2C.3D.4

题型:不详难度:| 查看答案
已知两圆的半径分别为5和3,圆心距为7,则两圆的位置关系是(    )
A.内含B.内切C.相交D.外切

题型:不详难度:| 查看答案
如图,在⊙O中,直径MN=10,正方形ABCD的四个顶点都分别在半径OP、OM及⊙O上,且∠POM=45º,则AB=(  )
A.2 B.C.D.

题型:不详难度:| 查看答案
将一个圆心角为150°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为     
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.