当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,AB为⊙O的直径,D为⊙O上一点,DE是⊙O的切线,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.(1)求证:AD平分∠BAC;(...
题目
题型:不详难度:来源:
如图,AB为⊙O的直径,D为⊙O上一点,DE是⊙O的切线,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.

(1)求证:AD平分∠BAC;
(2)若DE=3,⊙O的半径为5,求BF的长.
答案
(1)证明见解析;(2)BF=
解析

试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;
(2)在Rt△ABC中,运用勾股定理可将爱那个AC的长求出,运用切割线定理可将AE的长求出,根据△AED∽△ABF,可将BF的长求出.
试题解析:(1)连接OD,BC,OD与BC相交于点G,

∵D是弧BC的中点,
∴OD垂直平分BC,
∵AB为⊙O的直径,
∴AC⊥BC,
∴OD∥AE.
∵DE⊥AC,
∴OD⊥DE,
∵OD为⊙O的半径,
∴DE是⊙O的切线.
(2)由(1)知:OD⊥BC,AC⊥BC,DE⊥AC,
∴四边形DECG为矩形,
∴CG=DE=3,
∴BC=6.
∵⊙O的半径为5,
∴AB=10,
∴AC==8,
由(1)知:DE为⊙O的切线,
∴DE2=EC•EA,即32=(EA﹣8)EA,
解得:AE=9.
∵D为弧BC的中点,
∴∠EAD=∠FAB,
∵BF切⊙O于B,
∴∠FBA=90°.
又∵DE⊥AC于E,
∴∠E=90°,
∴∠FBA=∠E,
∴△AED∽△ABF,
,
∴BF=
考点:1.切线的判定,2.勾股定理,3.圆周角定理,4.相似三角形的判定与性质.
核心考点
试题【如图,AB为⊙O的直径,D为⊙O上一点,DE是⊙O的切线,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.(1)求证:AD平分∠BAC;(】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是(     )
A.外离B.内切C.相交D.外切

题型:不详难度:| 查看答案
如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为(    )
 
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.2 B.3C.4D.5
如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为(   )
A.5﹕3B.4﹕1C.3﹕1D.2﹕1

如图,点A、B、C在⊙上,且BO=BC,则=        .

如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.