当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,AB是⊙O的直径,点A、C、D在⊙O上,BP是⊙O的切线,连接PD并延长交⊙O于F、交AB于E,若∠BPF=∠ADC.(1)判断直线PF与AC的位置关系,...
题目
题型:不详难度:来源:
如图,AB是⊙O的直径,点A、C、D在⊙O上,BP是⊙O的切线,连接PD并延长交⊙O于F、交AB于E,若∠BPF=∠ADC.
(1)判断直线PF与AC的位置关系,并说明你的理由;
(2)当⊙O的半径为5,tan∠P=,求AC的长.

答案
(1)PF∥AC;理由见解析;(2)2
解析

试题分析:(1)连接BC,根据三角形内角和定理求出∠CAB=∠PEB,根据平行线的判定推出即可.
(2)求出sin∠ABC=sin∠P=,代入求出即可.
(1)解:直线BP和⊙O相切,
理由:连接BC,

∵AB是⊙O直径,
∴∠ACB=90°,
∴∠ABC+∠CAB=90°,
∵直线BP和⊙O相切,
∴∠PBA=90°,
∴∠P+∠PEB=90°,
∵∠P=∠ADC,
∴∠PEB=∠CAB,
∴PF∥AC;
(2)解:由已知,得∠ACB=90°,∠P=∠ADC=∠ABC,⊙O的半径为5,
∴AB=10,
∵tan∠P=
∴sin∠ABC=
∴AC=AB×=2
核心考点
试题【如图,AB是⊙O的直径,点A、C、D在⊙O上,BP是⊙O的切线,连接PD并延长交⊙O于F、交AB于E,若∠BPF=∠ADC.(1)判断直线PF与AC的位置关系,】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.

 
题型:不详难度:| 查看答案
如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.
(1)求证:AB与⊙O相切;
(2)若∠AOB=120°,AB=,求⊙O的面积.

题型:不详难度:| 查看答案
如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是(  )

A.         B.         C.      D.
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,C、P是上两点,AB=13,AC=5,
(1)如图(1),若点P是的中点,求PA的长;
(2)如图(2),若点P是的中点,求PA得长 .

题型:不详难度:| 查看答案
如图,AD是正五边形ABCDE的一条对角线,则∠BAD=       °.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.