当前位置:初中试题 > 数学试题 > 圆的认识 > 如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断B...
题目
题型:不详难度:来源:
如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.

图1                         图2
答案
(1)BE="FH" ;理由见解析
(2)证明见解析
(3)=2π
解析

试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH
(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH为45°,而∠ACB也为45°,从而可证明
(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长
试题解析:(1)BE=FH。理由如下:
∵四边形ABCD是正方形  ∴∠B=90°,
∵FH⊥BC  ∴∠FHE=90°
又∵∠AEF=90°  ∴∠AEB+∠HEF="90°"   且∠BAE+∠AEB=90°
∴∠HEF=∠BAE  ∴ ∠AEB=∠EFH   又∵AE=EF
∴△ABE≌△EHF(SAS)
∴BE=FH
(2)∵△ABE≌△EHF
∴BC=EH,BE=FH  又∵BE+EC=EC+CH ∴BE="CH"
∴CH=FH
∴∠FCH=45°,∴∠FCM=45°
∵AC是正方形对角线,∴ ∠ACD=45°
∴∠ACF=∠FCM +∠ACD =90°
(3)∵AE=EF,∴△AEF是等腰直角三角形
△AEF外接圆的圆心在斜边AF的中点上。设该中点为O。连结EO得∠AOE=90°

过E作EN⊥AC于点N
Rt△ENC中,EC=4,∠ECA=45°,∴EN=NC=
Rt△ENA中,EN =  
又∵∠EAF=45° ∠CAF=∠CEF=15°(等弧对等角)
∴∠EAC=30°
∴AE=
Rt△AFE中,AE== EF,∴AF=8
AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°
=2π·4·(90°÷360°)=2π
核心考点
试题【如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断B】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
如图,在△ABC中,∠A=90°,AB=6,AC=8,分别以点B和C为圆心的两个等圆外切,则图中阴影部分面积为   (结果保留π)

题型:不详难度:| 查看答案
如图,在△ABC中,利用尺规作图,画出△ABC的外接圆或内切圆(任选一个.不写作法,必须保留作图痕迹)

题型:不详难度:| 查看答案
在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为                 
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.
(1)求证:CB∥PD;
(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.

题型:不详难度:| 查看答案
若两圆的半径分别为2cm和6cm,圆心距为了8cm,则两圆的位置关系为(  )
A.外切B.相交C.内切D.外离

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.