当前位置:初中试题 > 数学试题 > 解三角形 > 如图,为了测量河两岸A、B两点的距离,在与AB垂直方向取点C,测得AC=a,∠ACB=,那么A、B两点的距离为(    ) A . a·sin,  B .a·t...
题目
题型:不详难度:来源:
如图,为了测量河两岸A、B两点的距离,在与AB垂直方向取点C,测得AC=a,∠ACB=,那么A、B两点的距离为(    ) 
A . a·sin,  B .a·tan  C.  a·cos    D . 
答案
B
解析
考点:
分析:根据题意,可得Rt△ABC,同时可知AC与∠ACB.根据三角函数的定义解答.
解答:解:根据题意,在Rt△ABC,有AC=a,∠ACB=α,且tanα=AB/AC,
则AB=AC×tanα=a?tanα,
故选B.
点评:本题考查了解直角三角形的应用,要熟练掌握三角函数的定义.
核心考点
试题【如图,为了测量河两岸A、B两点的距离,在与AB垂直方向取点C,测得AC=a,∠ACB=,那么A、B两点的距离为(    ) A . a·sin,  B .a·t】;主要考察你对解三角形等知识点的理解。[详细]
举一反三
(本小题满分8分)
一水库大坝的横截面是梯形ABCDADBCEF为水库的水面,点EDC上.已测得背水坡AB的长为12米,迎水坡DE的长为2米,∠BAD=135°,∠ADC=120°.试求水库的深度.(结果精确到0.1米,

题型:不详难度:| 查看答案
如图,一艘船在A处测得北偏东60°的方向上有一个小岛C,当它以每小时40海里的速度向正东方向航行了30分钟到达B处后,测得小岛C在其北偏东15°的方向上,求此时船与小岛之间的距离BC.(,结果保留整数)

题型:不详难度:| 查看答案
上午九时,一条船从A处出发,以每小时40海里的速度向正东方向航行,9时30分到达B处,从A、B两处分别测得小岛M在北偏东45°和北偏东15°方向,则B处船与小岛M的距离是       海里.
题型:不详难度:| 查看答案
(本题7分) 化简求值:x=2sin45°-1
题型:不详难度:| 查看答案
(本题12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。

(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明。
(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。
(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=时,求PE及DH的长。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.