当前位置:初中试题 > 数学试题 > 解三角形 > 如图为一直角三角形纸片,∠C=90°,两直角边AC=6㎝,BC=8㎝,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长....
题目
题型:不详难度:来源:
如图为一直角三角形纸片,∠C=90°,两直角边AC=6㎝,BC=8㎝,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.
答案
CD的长是3.
解析
由勾股定理求得AB=10㎝,再由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE
核心考点
试题【如图为一直角三角形纸片,∠C=90°,两直角边AC=6㎝,BC=8㎝,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.】;主要考察你对解三角形等知识点的理解。[详细]
举一反三
(1)情景一:如图(1)中AC=40m,CB=30m,从教室楼到宿舍楼,总有少数同学不走人行道AC和BC,而直接横穿草坪(即从A到B),你认为他们这样走,近了多少米?说明理由.

(2)情景二:M、N是河流l旁的两个村庄,现要在河边修一个抽水站向M、N村供水,问抽水站修在什么地方才能使所需的管道最短?请在图(2)中画出抽水站点P的位置.(保留作图痕迹,不写作法)

(3)数学知识来源于生活并且用来为人们服务,上面两个情景你赞同哪一个?你有何感想?(简要说明)
题型:不详难度:| 查看答案
如图,点O是等边△ABC内一点,∠AOB=110º,∠BOC=,将△BOC绕点C按顺时针方向旋转60º得△ADC,连接OD.
(1)△COD是什么三角形?说明理由;
(2)若AO=,AD=,OD=(为大于1的整数),求的度数;
(3)当为多少度时,△AOD是等腰三角形?
题型:不详难度:| 查看答案
计算: 
题型:不详难度:| 查看答案
如图,在△中,,垂足为.若,求△的周长(结果保留根号).
题型:不详难度:| 查看答案
如图,C为线段BD上一动点,分别过点B,D作ABBD,EDBD,连接AC,ED。已知AB=5,DE=1,BD=8,设CD=x。

(1)用含的代数式表示AC+CE的长;
(2)请问点C满足什么条件时,AC+CE的值最小?
(3)根据(2)中的规律和结论,请构造图形(给出必要的说明)求出代数式的最小值。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.