当前位置:初中试题 > 数学试题 > 解三角形 > 梧桐山是深圳最高的山峰,某校综合实践活动小组要测量“主山峰”的高度,先在梧桐山对面广场的A处测得“峰顶”N的仰角为45o,此时,他们刚好与峰底D在同一水平线上。...
题目
题型:不详难度:来源:
梧桐山是深圳最高的山峰,某校综合实践活动小组要测量“主山峰”的高度,先在梧桐山对面广场的A处测得“峰顶”N的仰角为45o,此时,他们刚好与峰底D在同一水平线上。然后沿着坡度为30o的斜坡正对着“主山峰”前行700米,到达B处,再测得“峰顶”N的仰角为60o,如图,根据以上条件求出“主山峰”的高度?(测角仪的高度忽略不计,结果精确到1米,参考数据:)。

答案
155米.
解析

试题分析:首先过点B作BF⊥DN于点F,过点B作BE⊥AD于点E,可得四边形BEDF是矩形,然后在Rt△ABE中,由三角函数的性质,可求得AE与BE的长,再设BF=x米,利用三角函数的知识即可求得方程:55+x=x+55,继而可求得答案.
试题解析:过点B作BF⊥DN于点F,过点B作BE⊥AD于点E,
∵∠D=90°,
∴四边形BEDF是矩形,
∴BE=DF,BF=DE,
在Rt△ABE中,AE=AB•cos30°=110×=55(米),BE=AB•sin30°=×110=55(米);
设BF=x米,则AD=AE+ED=(55+x)(米),
在Rt△BFN中,NF=BF•tan60°=x(米),
∴DN=DF+NF=(55+x)(米),
∵∠NAD=45°,
∴AD=DN,
即55+x=x+55,
解得:x=55,
∴DN=55+x≈150(米).
答:“一炷香”的高度约为150米.
考点: 1.解直角三角形的应用-仰角俯角问题;2.解直角三角形的应用-坡度坡角问题.
核心考点
试题【梧桐山是深圳最高的山峰,某校综合实践活动小组要测量“主山峰”的高度,先在梧桐山对面广场的A处测得“峰顶”N的仰角为45o,此时,他们刚好与峰底D在同一水平线上。】;主要考察你对解三角形等知识点的理解。[详细]
举一反三
计算:
题型:不详难度:| 查看答案
目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.

(1)求大楼与电视塔之间的距离AC;
(2)求大楼的高度CD(精确到1米)。
(参考数据:sin39°≈0.6293,cos39°≈0.7771,tan39°≈0.8100)
题型:不详难度:| 查看答案
课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB在地面上的影长BC为24米,那么旗杆AB的高度约是
A.B.C.D.

题型:不详难度:| 查看答案
计算:
题型:不详难度:| 查看答案
如图,从热气球C处测得地面A、B两处的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,求AB两处的距离.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.