当前位置:初中试题 > 数学试题 > 解三角形 > 如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为(  )A.B.C...
题目
题型:不详难度:来源:
如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为(  )

A.
B.C.
D.
答案
A
解析
首先延长DC与A′D′,交于点M,由四边形ABCD是菱形、折叠的性质,易求得△BCM是等腰三角形,△D′FM是含30°角的直角三角形,然后设CF=x,D′F=DF=y,利用正切函数的知识,即可求得答案.
解:延长DC与A′D′,交于点M,

∵在菱形纸片ABCD中,∠A=60°,
∴∠DCB=∠A=60°,AB∥CD,
∴∠D=180°﹣∠A=120°,
根据折叠的性质,可得∠A′D′F=∠D=120°,
∴∠FD′M=180°﹣∠A′D′F=60°,
∵D′F⊥CD,
∴∠D′FM=90°,∠M=90°﹣∠FD′M=30°,
∵∠BCM=180°﹣∠BCD=120°,
∴∠CBM=180°﹣∠BCM﹣∠M=30°,
∴∠CBM=∠M,
∴BC=CM,
设CF=x,D′F=DF=y,
则BC=CM=CD=CF+DF=x+y,
∴FM=CM+CF=2x+y,
在Rt△D′FM中
∴x=y,
==
故选A.
核心考点
试题【如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为(  )A.B.C】;主要考察你对解三角形等知识点的理解。[详细]
举一反三
如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为  

题型:不详难度:| 查看答案
中国“蛟龙” 号深潜器目前最大深潜极限为7062.68米.如图,某天该深潜器在海面下2000米的A点处作业测得俯角为30°正前方的海底有黑匣子C信号发出,该深潜器受外力作用可继续在同一深度直线航行3000米后再次在B点处测得俯角为45°正前方的海底有黑匣子C信号发出,请通过计算判断“蛟龙”号能否在保证安全的情况下打捞海底黑匣子C.(参考数据≈1.732)

题型:不详难度:| 查看答案
如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在 Rt△ABC中,∠C=90°,若Rt△ABC是“好玩三角形”,则tanA=         
题型:不详难度:| 查看答案
如图,扇形OAB的半径为4,圆心角∠AOB=90°,点C是上异于点A、B的一动点,过点C作CD⊥OB于点D,作CE⊥OA于点E,联结DE,过O点作OF⊥DE于点F,点M为线段OD上一动点,联结MF,过点F作NF⊥MF,交OA于点N.
(1)当时,求的值;
(2)设OM=x,ON=y,当时,求y关于x 的函数解析式,并写出它的定义域;
(3)在(2)的条件下,联结CF,当△ECF与△OFN相似时,求OD的长.

题型:不详难度:| 查看答案
观察下列等式
①sin30°=     cos60°=
②sin45°=   cos45°=
③sin60°=    cos30°=

根据上述规律,计算sin2a+sin2(90°﹣a)=       
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.