当前位置:初中试题 > 数学试题 > 相似三角形性质 > 如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG。请探究:(1)线段AE与CG是否...
题目
题型:安徽省月考题难度:来源:
如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG。请探究:
(1)线段AE与CG是否相等?请说明理由。
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE。
答案
解:(1)AE=CG,
理由:正方形ABCD和正方形BEFG中,
∠3+∠5=90°,
∠4+∠5=90°,
∴∠3=∠4,
又AB=BC,BE=BG,
∴△ABE≌△CBG,
∴AE=CG;
(2)∵正方形ABCD和正方形BEFG,
∴∠A=∠D=∠FEB=90°,
∴∠1+∠2=90°,
∠2+∠3=90°,
∴∠1=∠3,
又∵∠A=∠D,
∴△ABE∽△DEH,
 

∴y=-x2+x =-(x-2+
当x=时,y有最大值为; 
(3)当E点是AD的中点时,△BEH∽△BAE,
理由:∵E是AD中点,
∴AE=
∴DH=
又∵△ABE∽△DEH,

又∵

又∠DAB=∠FEB=90°,
∴△BEH∽△BAE。
核心考点
试题【如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG。请探究:(1)线段AE与CG是否】;主要考察你对相似三角形性质等知识点的理解。[详细]
举一反三
若△ABC中,有AB∶BC∶CA=2∶3∶4 ,△A′B′C′中必有A′B′∶B′C′∶C′A′=2∶3∶4且周长不同,则下面结论成立的是[     ]
A.AB=A′B′,AC=A′C′,BC=B′C′
B.∠A=∠A′,AB=A′B′,AC=A′C′
C.△ABC≌△A′B′C′
D.△ABC不全等于△A′B′C′
题型:湖北省月考题难度:| 查看答案
如图所示,Rt△ABC∽Rt△DEF, 则cosE的值等于
[     ]
A.
B.
C.
D.
题型:专项题难度:| 查看答案
如图所示,半径为2的⊙O内有互相垂直的两条弦AB、CD相 交于P点。
(1)求证:PA·PB=PC·PD;
(2)设BC中点为F,连结FP并延长交AD于E,求证:EF⊥AD;
(3)若AB=8,CD=6,求OP的长。
题型:专项题难度:| 查看答案
如图所示,△ABC内接于圆O,过点A的直线交圆O于点P,交BC的延长线于点D,AB2=AP·AD。
(1)求证:AB=AC;
(2)如果∠ABC=60°,圆O的半径为1,且P为的中点,求AD的长。
题型:专项题难度:| 查看答案
如图所示,A、B是直线l上的两点,AB=4厘米,过l外一点C作CD∥l,射线BC与l所成的锐角∠a=60°,线段BC=2厘米,动点P、Q分别从B、C同时出发,P以每秒1厘米的速度沿由B向C的方向运动,Q以每秒2厘米的速度沿由C向D的方向运动,设P、Q 运动的时间为t秒,当t>2时,PA交CD于E,
(1)用含t的代数式分别表示CE和QE的长,
(2)求△APQ的面积S与t的函数关系式,
(3)当QE恰好平分△APQ的面积时,QE的长是多少厘米?
题型:专项题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.