当前位置:初中试题 > 数学试题 > 相似三角形性质 > 如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E。(1)求证:AB·AF=CB·CD;(2)已...
题目
题型:江苏中考真题难度:来源:
如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E。
(1)求证:AB·AF=CB·CD;
(2)已知AB=15cm,BC=9cm,P是射线DE上的动点,设DP=xcm(x>0),四边形BCDP的面积为ycm2
①求y关于x的函数关系式;
②当x为何值时,△PBC的周长最小,并求出此时y的值。
答案
解:(1)∵
∴DE垂直平分AC,
,∠DFA=∠DFC=90°,∠DAF=∠DCF,
∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,
∴∠DCF=∠DAF=∠B,
在Rt△DCF和Rt△ABC中,∠DFC=∠ACB=90°,∠DCF=∠B,
∴△DCF∽△ABC,


∴AB·AF=CB·CD;
(2)①∵AB=15,BC=9,∠ACB=90°,


 ∴
②∵BC=9(定值),
∴△PBC的周长最小,就是PB+PC最小,
由(1)知,点C关于直线DE的对称点是点A,
∴PB+PC=PB+PA,故只要求PB+PA最小,
显然当P、A、B三点共线时PB+PA最小,
此时DP=DE,PB+PA=AB,
由(1)
得△DAF∽△ABC,EF∥BC,
,EF=
∴AF∶BC=AD∶AB,即6∶9=AD∶15,
∴AD=10,
Rt△ADF中,AD=10,AF=6,
∴DF=8,

∴当时,△PBC的周长最小,此时
核心考点
试题【如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E。(1)求证:AB·AF=CB·CD;(2)已】;主要考察你对相似三角形性质等知识点的理解。[详细]
举一反三
对于任意正实数a,b,
≥0,
∴a- 2+b≥0,
∴a+b≥2,只有点a=b时,等号成立
结论:在a+b≥2(a,b均为正实数)中,若ab为定值p,则a+b≥2,只有当a=b时,a+b有最小值2
根据上述内容,回答下列问题:
(1)若m>0,只有当m=_____时,m+有最小值______。
(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合),过点C作CD⊥AB,垂足为D,AD=a,DB=b,试根据图形验证a+b≥ 2,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状。
题型:江苏中考真题难度:| 查看答案
如图,E,F,G,H分别为正方形ABCD的边AB,BC,CD,DA上的点,且AE=BF=CG=DH=AB,则图中阴影部分的面积与正方形ABCD的面积之比为
[     ]
A、
B、
C、
D、
题型:江苏中考真题难度:| 查看答案
如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E。
(1)求证:AE=CE;
(2)EF与⊙O相切于点E,交AC的延长线于点F,若CD=CF=2cm,求⊙O的直径;
(3)若=n(n>0),求sin∠CAB。
题型:广东省中考真题难度:| 查看答案
如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点,点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G,点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止,设点P,Q运动的时间是t秒(t>0)。
(1)D,F两点间的距离是______;
(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;
(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;
(4)连接PG,当PG∥AB时,请直接写出t的值。
题型:河北省中考真题难度:| 查看答案
如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0)。
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);
(2)求线段BC的对应线段B′C′所在直线的解析式。
题型:安徽省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.