当前位置:初中试题 > 数学试题 > 相似图形性质 > (11·珠海)(本题满分6分)如图,在Rt△ABC中,∠C=90°.(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点.(保留作图痕迹,不写作法)...
题目
题型:不详难度:来源:
(11·珠海)(本题满分6分)如图,在RtABC中,∠C=90°.
(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点.(保留作图痕迹,不
写作法)
(2)若AC=6,AB=10,连结CD,则DE_  ▲  CD_  ▲  
答案
(1)作出BC的垂直平分线          ……………………3分

答:线段DE即为所求          ……………………4分
(2)3,5                         ……………………6分
解析

核心考点
试题【(11·珠海)(本题满分6分)如图,在Rt△ABC中,∠C=90°.(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点.(保留作图痕迹,不写作法)】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
(2011•淮安)如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=._________
题型:不详难度:| 查看答案
将左下图中的箭头缩小到原来的,得到的图形是(  )
题型:不详难度:| 查看答案
在正方形网格图①、图②中各画一个等腰三角形.每个等腰三角形的一个顶点为
格点A,其余顶点从格点BCDEFGH中选取,并且所画的两个三角形不全等.
题型:不详难度:| 查看答案
探究
如图①,在ABCD的形外分别作等腰直角△ABF和等腰直角△ADE,∠FAB=EAD=90°,连结ACEF.在图中找一个与△FAE全等的三角形,并加以证明.(5分)
应用
ABCD的四条边为边,在其形外分别作正方形,如图②,连结EFGHIJKL.若□ABCD的面积为5,则图中阴影部分四个三角形的面积和为   .(2分)
题型:不详难度:| 查看答案
如图,∠C=90°,点AB在∠C的两边上,CA=30,CB=20,连结AB.点P
B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点PBC
两点不重合时,作PDBCABD,作DEACEF为射线CB上一点,且∠CEF=∠ABC.设
P的运动时间为x(秒).
(1)用含有x的代数式表示CF的长.(2分)
(2)求点F与点B重合时x的值.(2分)
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求yx之间的函数关系式.(3分)
(4)当x为某个值时,沿PD将以DEFB为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.(3分)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.