当前位置:初中试题 > 数学试题 > 相似图形性质 > 已知:如图,点D、E分别在AB、AC上,BE与CD相交于点F,BD=CE,∠B=∠C.求证:BE=CD....
题目
题型:不详难度:来源:
已知:如图,点D、E分别在AB、AC上,BE与CD相交于点F,BD=CE,∠B=∠C.
求证:BE=CD.
答案
在△FDB和△FEC中,

∴△FDB≌△FEC. 
∴BF=CF,DF=EF.  
∴BF+EF=CF+DF.
∴BE=CD. 
解析
由两角和一对边即可得出△BDF≌△CEF,即可得出结论
核心考点
试题【已知:如图,点D、E分别在AB、AC上,BE与CD相交于点F,BD=CE,∠B=∠C.求证:BE=CD.】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形, M、N分别是CE、CF的中点.

小题1:求证:△DMN是等边三角形;
小题2:连接EF,Q是EF中点,CP⊥EF于点P. 求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.
题型:不详难度:| 查看答案
如果一个多边形的内角和是其外角和的2倍,那么这个多边形是
A.六边形B.五边形C.四边形D.三角形

题型:不详难度:| 查看答案
已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.
求证:AB=DC.

题型:不详难度:| 查看答案
已知:等边中,点O是边AC,BC的垂直平分线的交点,M,N分别在直线AC, BC上,且
小题1: 如图1,当CM=CN时, M、N分别在边AC、BC上时,请写出AM、CN 、MN三者之间的数量关系;
小题2: 如图2,当CM≠CN时,M、N分别在边AC、BC上时,(1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;
小题3:  如图3,当点M在边AC上,点N在BC 的延长线上时,请直接写出线段AM、CN 、MN三者之间的数量关系.
题型:不详难度:| 查看答案
以下命题中,真命题的是 【 ▲ 】
A.两条线只有一个交点
B.同位角相等
C.两边和一角对应相等的两个三角形全等
D.等腰三角形底边中点到两腰相等

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.