当前位置:初中试题 > 数学试题 > 相似图形性质 > 如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则AB与AC+BD相等吗?请说明理由....
题目
题型:不详难度:来源:
如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则AB与AC+BD相等吗?请说明理由.

答案
见解析
解析
本题考查的是全等三角形的判定与性质
证法一:如图(1)在AB上截取AF=AC,连结EF.

在△ACE和△AFE中,  ∴△ACE≌△AFE(SAS)
∠6=∠D
在△EFB和△BDE中, ∴△EFB≌△EDB(AAS) ∴FB=DB
∴AC+BD=AF+FB=AB
证法二:如图(2),延长BE,与AC的延长线相交于点F

∠F=∠3
在△AEF和△AEB中, ∴△AEF≌△AEB(AAS)∴AB=AF,BE=FE
在△BED和△FEC中, ∴△BED≌△FEC(ASA) ∴BD=FC
∴AB=AF=AC+CF=AC+BD.
核心考点
试题【如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则AB与AC+BD相等吗?请说明理由.】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
如图,OP平分,垂足分别为A,B.下列结论中不一定成立的是( )

A.    B.平分     C.    D.垂直平分
题型:不详难度:| 查看答案
如图,已知AD⊥BE,垂足C是BE的中点,AB=DE.求证:AB//DE.

题型:不详难度:| 查看答案
把下列说明Rt△ABC≌Rt△DEF的条件或根据补充完整.

(1) _______,∠A="∠D" ( ASA )           
(2) AC="DF,________" (SAS)
(3) AB="DE,BC=EF" (         )            
(4) AC="DF," ______ ( HL )
(5) ∠A="∠D," BC="EF" (         )
(6) ________,AC="DF" ( AAS )
题型:不详难度:| 查看答案
小明既无圆规,又无量角器,只有一个三角板,他是怎样画角平分线的呢?他的具体做法如下:在已知∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线交点为P,画射线OP.则OP平分∠AOB。其中运用的数学道理是                        

题型:不详难度:| 查看答案
如图,AB=AC,CD⊥AB于D,BE⊥AC于E,则图中全等的三角形对数为( )
A.1B.2C.3D.4

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.