当前位置:初中试题 > 数学试题 > 相似图形性质 > 如图△ABC中,∠C=90°,∠A=30°,B C=5cm;△DEF中∠D=90°,∠E=45°,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合...
题目
题型:不详难度:来源:
如图△ABC中,∠C=90°,∠A=30°,B C=5cm;△DEF中∠D=90°,∠E=45°,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止).

(1) 当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行.
(2) 在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°?如果存在,求出AD的长度;如果不存在,请说明理由.
答案
(1)cm;(2)cm.
解析

试题分析:(1)因为∠C=90°,∠A=30°,BC=5cm,所以AB=10cm,又因为∠FDE=90°,∠DEF=45°,DE=3cm,所以DE=4cm,连接EB,设BE∥AC,则可求证∠EBD=∠A=30°,故AD的长度可求;
(2)当∠EBD=22.5°时,利用三角形外角的性质求得∠BEF=22.5°,则∠EBD=∠BEF,故BF=EF=,AD=BD-BF-DF=(cm);
试题解析:(1)cm时,BE∥AC.理由如下:
设EB∥AC,则∠EBD=∠A=30°,
∴在Rt△EBD中,cm
cm
cm时,BE∥AC;
(2)在△DEF的移动过程中,当AD=cm时,使得∠EBD=22.5°.理由如下:
假设∠EBD=22.5°.
∵在△DEF中,∠D=90°,∠DEF=45°,DE=3cm,
∴EF=cm,∠DEF=∠DFE=45°,DE=DF=3cm.
又∵∠DFE=∠FEB+∠FBE=45°,
∴∠EBD=∠BEF,
∴BF=EF=
∴AD=BD-BF-DF=(cm).
∴在△DEF的移动过程中,当AD=cm时,使得∠EBD=22.5°.
考点: 几何变换综合题
核心考点
试题【如图△ABC中,∠C=90°,∠A=30°,B C=5cm;△DEF中∠D=90°,∠E=45°,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
已知,如图,AC为平行四边形ABCD的对角线,点E是边AD上一点,

(1)若∠CAD=∠EBC,AC=BE,AB=6,求CE的长。
(2)若AE+AB=BC,求证:∠BEC=∠ABE+∠BAD.
题型:不详难度:| 查看答案
如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=         

题型:不详难度:| 查看答案
如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.

题型:不详难度:| 查看答案
如图,图1和图2都是7×4正方形网格,每个小正方形的边长为l,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.
(1)在图1中画出一个等腰直角三角形ABC;

(2)在图2中画出一个钝角三角形ABD,使△ABD的面为3.

题型:不详难度:| 查看答案
如图:在等腰△ABC中,AB=AC,AD上BC,垂足为D,以AD为直径作⊙0,⊙0分别交AB、AC于E、F.

(1)求证:BE=CF;
(2)设AD、EF相交于G,若EF=8,BC=10,求⊙0的半径.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.