当前位置:初中试题 > 数学试题 > 相似图形性质 > 已知正方形ABCD的边长为2,E为BC边的延长线上一点,CE=2,联结AE,与CD交于点F,联结BF并延长与线段DE交于点G,则BG的长为           ...
题目
题型:不详难度:来源:
已知正方形ABCD的边长为2,E为BC边的延长线上一点,CE=2,联结AE,与CD交于点F,联结BF并延长与线段DE交于点G,则BG的长为           

答案

解析

试题分析:利用全等三角形的判定AAS得出△ADF≌△ECF,进而得出FG是△DCP的中位线,得出,再利用勾股定理得出BG的长即可:
如图,过点C作CP∥BG,交DE于点P.
∵BC=CE=2,∴CP是△BEG的中位线.∴P为EG的中点.
又∵AD=CE=1,AD∥CE,
∴在△ADF和△ECF中,∠AFD=∠EFC,∠ADC=∠FCE,AD=CE,
∴△ADF≌△ECF(AAS).∴CF=DF.
又CP∥FG,∴FG是△DCP的中位线.∴G为DP的中点.
∵CD=CE=2,∴DE=

连接BD,
易知∠BDC=∠EDC=45°,∴∠BDE=90°.
又∵BD=


核心考点
试题【已知正方形ABCD的边长为2,E为BC边的延长线上一点,CE=2,联结AE,与CD交于点F,联结BF并延长与线段DE交于点G,则BG的长为           】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
已知:如图,点B、F、C、E在同一直线上,BF=CE,AB⊥BE,DE⊥BE,垂足分别为B、E,联结AC、DF,∠A=∠D.
求证:AB=DE.

题型:不详难度:| 查看答案
已知:如图, AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,联结OD , 作BE∥OD交⊙O于点E, 联结DE并延长交BN于点C.
(1)求证:DC是⊙O的切线;
(2)若AD=l,BC=4,求直径AB的长.

题型:不详难度:| 查看答案
如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).
(1)当G(4,8)时,则∠FGE=                   °
(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.
要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).

题型:不详难度:| 查看答案
在矩形ABCD中,已知AB=2cm,BC=3cm,现有一根长为2 cm的木棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程中所围成的图形的面积为( )
A.6 cm2B.3 cm2C.(2+π)cm2D.(6-π)cm2

题型:不详难度:| 查看答案
六边形的外角和等于       度.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.