当前位置:初中试题 > 数学试题 > 相似图形 > 如图,已知正△A1B1C1边长为1,分别取△A1B1C1三边的中点A2,B2,C2,得到△A2B2C2,用同样的方法,得到△A3B3C3,以此下去,正△AnBn...
题目
题型:不详难度:来源:
如图,已知正△A1B1C1边长为1,分别取△A1B1C1三边的中点A2B2C2,得到△A2B2C2,用同样的方法,得到△A3B3C3,以此下去,正△AnBnCn的面积是        .
答案

解析
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依次类推△AnBnCn的面积是
核心考点
试题【如图,已知正△A1B1C1边长为1,分别取△A1B1C1三边的中点A2,B2,C2,得到△A2B2C2,用同样的方法,得到△A3B3C3,以此下去,正△AnBn】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,ABOC,点A的坐标为(0,8),点C的坐标为(10,0),OBOC.点PC点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点PPHOB,垂足为H.

(1)求点B的坐标;
(2)设△HBP的面积为SS≠0),点P的运动时间为t秒,求St之间的函数关系式;当t为何值时,△HBP的面积最大,并求出最大面积;
(3)分别以PH为圆心,PCHB为半径作⊙P和⊙H,当两圆外切时,求此时t的值.
题型:不详难度:| 查看答案
如图,  ABCD中,EF∥AB,DE∶EA = 2∶3,EF = 4,则CD的长为        .
题型:不详难度:| 查看答案
已知线段OA⊥OB,C为OB上中点,D为AO上一点,连AC、BD交于P点.

(1)如图1,当OA=OB且D为AO中点时,求的值;
(2)如图2,当OA=OB,=时,求△BPC与△ACO的面积之比.
题型:不详难度:| 查看答案
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:

纸片利用率=×100%
发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.
你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.
请帮忙计算方案二的利用率,并写出求解过程.
探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.

题型:不详难度:| 查看答案
如图, 的中位线,则与四边形BCDE的面积之比是(   ▲  )
A.1:2B.1:3C.1:4D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.