当前位置:初中试题 > 数学试题 > 相似图形 > 以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30°.(1)点E、F、M分别是AC、CD、DB的中点,连接E...
题目
题型:不详难度:来源:
以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30°.
(1)点E、F、M分别是AC、CD、DB的中点,连接EF和FM.
①如图1,当点D、C分别在AO、BO的延长线上时,=_______;

②如图2,将图1中的△AOB绕点O沿顺时针方向旋转角(),其他条件不变,判断的值是否发生变化,并对你的结论进行证明;

(2)如图3,若BO=,点N在线段OD上,且NO=3.点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.

答案
(1);(2)没有,证明见解析.
解析

试题分析:(1)1连接EF,由已知条件证明△EMF是直角三角形,并且可求出∠EMF=30°,利用30°角的余弦值即可求出的值;2若△AOB绕点O沿顺时针方向旋转角(0°<<60°),其他条件不变,的值不发生变化,连接EF、AD、BC,由1的思路证明∠EMF=30°即可.
(2)过O作OE⊥AB于E,由已知条件求出当P在点E处时,点P到O点的距离最近为,当旋转到OE与OD重合时,NP取最小值为:OP-ON=-2;当P点在点B处时,且当旋转到OB在DO的延长线时,NP取最大值OB+ON=.
试题解析:(1)①
② 不变.
证明:如图,连结AD和BC.

在Rt△AOB和Rt△COD中,
∠AOB=∠COD=90°,∠ABO=∠DCO=30°.
∴∠AOD=∠COB,



又∵E、F、M分别为AC、CD、BD中点,


(2)线段PN长度的最小值为-2,最大值为
考点: 相似形综合题.
核心考点
试题【以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30°.(1)点E、F、M分别是AC、CD、DB的中点,连接E】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
如图,在△ABC中,若DE∥BC,AD=5,BD=10,DE=4,则BC的值为(      )
A.8B.9C.10D.12

题型:不详难度:| 查看答案
如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上, OM、ON分别交CA、CB于点P、Q,∠MON绕点O任意旋转.当时, 的值为     ;当时,      .(用含n的式子表示)

题型:不详难度:| 查看答案
为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆为3.1米,且BC=1米,CD=5米,请你根据所给出的数据求树高ED.

题型:不详难度:| 查看答案
如果,那么             .
题型:不详难度:| 查看答案
若两个三角形的相似比为2:3,则这两个三角形对应角平分线的比为       
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.