当前位置:初中试题 > 数学试题 > 梯形中位线 > 已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.(1)求证:FC=BE...
题目
题型:不详难度:来源:
已知,如图在直角梯形ABCD中,ADBC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.
(1)求证:FC=BE;
(2)若AD=DC=2,求AG的长.
答案
(1)证明:∵∠ABC=90°,DE⊥AC于点F,
∴∠ABC=∠AFE.
∵AC=AE,∠EAF=∠CAB,
∴△ABC≌△AFE,
∴AB=AF.
∴AE-AB=AC-AF,
即FC=BE;

(2)∵AD=DC=2,DF⊥AC,
∴AF=
1
2
AC=
1
2
AE.
∴AG=CG,∠E=30°.
∵∠EAD=90°,
∴∠ADE=60°,
∴∠FAD=∠E=30°,
∴FC=


3

∵ADBC,
∴∠ACG=∠FAD=30°,
∴CG=2,
∴AG=2.
核心考点
试题【已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.(1)求证:FC=BE】;主要考察你对梯形中位线等知识点的理解。[详细]
举一反三
问题探究:
(1)请你在图①中做一条直线,使它将矩形ABCD分成面积相等的两部分;
(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分.
问题解决:
(3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DCOB,OB=6,CD=BC=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处.为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的两部分,你认为直线l是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在直角梯形ABCD中,ADBC,BC⊥CD,∠B=60°,BC=2AD,E,F分别为AB、BC的中点.
(1)求证:四边形AFCD是矩形;
(2)当AD=3时,试求DE的长.
题型:不详难度:| 查看答案
如图,在梯形ABCD中,ABCD,∠D=2∠B,AD=a,CD=b,则AB等于(  )
A.a+
b
2
B.
a
2
+b
C.a+bD.a+2b

题型:不详难度:| 查看答案
如图所示,在梯形ABCD中,ADBC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(3)经过多长时间,四边形PQCD是等腰梯形?
题型:不详难度:| 查看答案
如图,在等腰梯形ABCD中,ABCD,对角线AC⊥BD于P点,点A在y轴上,点C、D在x轴上.
(1)若BC=10,A(0,8),求点D的坐标;
(2)若BC=13


2
,AB+CD=34,求过B点的反比例函数的解析式;
(3)如图,在PD上有一点Q,连接CQ,过P作PE⊥CQ交CQ于S,交DC于E,在DC上取EF=DE,过F作FH⊥CQ交CQ于T,交PC于H,当Q在PD上运动时,(不与P、D重合),
PQ
PH
的值是否发生变化?若变化,求出变化范围;若不变,求出其值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.