当前位置:初中试题 > 数学试题 > 梯形中位线 > 我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的...
题目
题型:不详难度:来源:
我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在△ABC中,点D,E分别在AB,AC上,设CD,BE相交于点O,
若∠A=60°,∠DCB=∠EBC=
1
2
∠A.请你写出图中一个与∠A相等的角,并猜想图中哪个四边形是等对边四边形;
(3)在△ABC中,如果∠A是不等于60°的锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=
1
2
∠A.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
答案
(1)回答正确的给(1分)(如:平行四边形、等腰梯形等).

(2)答:与∠A相等的角是∠BOD(或∠COE),
∵∠BOD=∠OBC+∠OCB=30°+30°=60°,
∴∠A=∠BOD,
猜想:四边形DBCE是等对边四边形;

(3)答:此时存在等对边四边形,是四边形DBCE.
证法一:如图,作CG⊥BE于G点,作BF⊥CD交CD延长线于F点.
∵∠DCB=∠EBC=
1
2
∠A,BC为公共边,
∴△BCF≌△CBG,
∴BF=CG,
∵∠BDF=∠ABE+∠EBC+∠DCB,∠BEC=∠ABE+∠A,
∴∠BDF=∠BEC,
∴△BDF≌△CEG,
∴BD=CE
∴四边形DBCE是等对边四边形.

证法二:如图,以C为顶点作∠FCB=∠DBC,CF交BE于F点.
∵∠DCB=∠EBC=
1
2
∠A,BC为公共边,
∴在△BDC与△CFB中,





∠DBC=∠FCB
BC=CB
∠DCB=∠EBC

∴△BDC≌△CFB(ASA),
∴BD=CF,∠BDC=∠CFB,
∴∠ADC=∠CFE,
∵∠ADC=∠DCB+∠EBC+∠ABE,∠FEC=∠A+∠ABE,
∴∠ADC=∠FEC,
∴∠FEC=∠CFE,
∴CF=CE,
∴BD=CE,
∴四边形DBCE是等对边四边形.
说明:当AB=AC时,BD=CE仍成立.只有此证法,只给(1分).
核心考点
试题【我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的】;主要考察你对梯形中位线等知识点的理解。[详细]
举一反三
如图,等腰梯形ABCD中,ADBC,AD=5,AB=6,BC=8,ABDE,求△DEC的周长.
题型:不详难度:| 查看答案
如图,在等腰梯形ABCD中,上底为6cm,下底为8cm,高为


3
cm,则腰长为______cm.
题型:不详难度:| 查看答案
在数学活动课上,小明提出一个问题:“如图,在四边形ABCD中,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB是多少度”大家经过了一番热烈的讨论交流之后,小雨第一个得出了正确结论,你知道他说的是(  )
A.20°B.35°C.55°D.70°

题型:不详难度:| 查看答案
在直角梯形ABCD中,ABDC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、EC、BF、CF;
(1)判断四边形AECD的形状;(不需要说理)
(2)△CDF与△BEF全等吗?请说明理由.
题型:不详难度:| 查看答案
已知等腰△ABC中,AB=AC=13,BC=10
(1)如图①,△ABC的面积=______,腰AC上的高BD=______;
(2)如图②,P是底边BC上任意一点,PE⊥AB于E,PF⊥AC于F,连接AP,不难发现:△ABP的面积+△ACP的面积=△ABC的面积,据此式,你能求出PE+PF等于多少吗?你有什么发现?
(3)如图③四边形BCGH是形状、大小一定的等腰梯形,点P是下底BC上一动点,试问:点P到两腰的距离之和是否为一定值?简述理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.