当前位置:初中试题 > 数学试题 > 梯形中位线 > 如图所示,梯形AOCD中,∠AOC=90°,AD=9,OC=10,AO=4在线段OC上任取一点N(不与O、C重合),连接DN,作NE⊥DN,与直线AO交于点E....
题目
题型:不详难度:来源:
如图所示,梯形AOCD中,∠AOC=90°,AD=9,OC=10,AO=4在线段OC上任取一点N(不与O、C重合),连接DN,作NE⊥DN,与直线AO交于点E.
(1)当CN=2时,求OE;
(2)若CN=t,OE=s,求s关于自变量t的函数关系式;
(3)探索与研究:如图2所示,分别以AO、OC所在的直线为y轴与x轴,O为原点,建立如图所示的直角坐标系,动点M从点O沿线段OC向C点运动,动点N从点C沿线段CO向点O同时等速运动,设现有一点F(x,y)满足MF⊥MN,NF⊥ND,试用含x的式子表示y.
答案
(1)如图所示,作DF⊥OC于F,
由题意知,CN=2,AD=9,OC=10.
∵AOCD是梯形且∠AOC=90°,
∴OF=AD=9,CF=OC-OF=1,NF=CN-CF=1,DF=OA=4.
∴在Rt△DFN中,tan∠DNF=
DF
NF
=
4
1
=4.
又∵NE⊥DN,∠AOC=90°,
∴∠DNF=∠OEN,tan∠OEN=tan∠DNF=4.
∴OE=
ON
tan∠OEN
=
8
4
=2;

(2)如图所示:
①当0<t<1时由(1)知CF=1,所以此时N点在F点右侧,E点在y轴负半轴
∵∠DNF=∠OEN,
∴tan∠DNF=
DF
FN
=
4
1-t
=tan∠OEN=
OF
OE
=
10-t
s

4
1-t
=
10-t
s

∴s=
t2-11t+10
4

②当t>1时,如图所示N点在F点左侧,E点则在y轴正半轴.
∵∠DNF=∠OEN,
∴tan∠DNF=
DN
FN
=tan∠OEN=
OF
OE

10-t
s
=
4
t-1

∴S=
-t2+11t-10
4


(3)如图所示:由图知点F在第四象限,
∵MF⊥MN,NF⊥ND,点F(x,y),M点、N点同时等速运动,
∴CN=OM=x.
又∵∠MFN+∠MNF=∠MNF+∠DNM=90°,
∴∠MFN=∠DNM,
即:tan∠MFN=
MN
MF
=
10-2x
|y|
=tan∠DNM=
OA
1-x
=
4
1-x
,y<0,
∴y=-
1
2
x2+3x-
5
2

核心考点
试题【如图所示,梯形AOCD中,∠AOC=90°,AD=9,OC=10,AO=4在线段OC上任取一点N(不与O、C重合),连接DN,作NE⊥DN,与直线AO交于点E.】;主要考察你对梯形中位线等知识点的理解。[详细]
举一反三
等腰梯形的腰长为5cm,上、下底的长分别为6cm和12cm,则它的面积为______.
题型:不详难度:| 查看答案
如图,梯形ABCD中,ADBC,CE是∠BCD的平分线,且CE⊥AB,E为垂足,BE=2AE.若四边形AECD面积为1,则梯形ABCD的面积为______.
题型:不详难度:| 查看答案
如图,等腰梯形ABCD中,ADBC,AB=DC,点E是AD延长线上的一点,且CE=CD.若∠B=55°,求∠E的大小.
题型:不详难度:| 查看答案
如图,在梯形ABCD中,ADBC,AB=CD,AD=2,BC=6,∠B=60°,则AB的长为(  )
A.3B.4C.5D.6

题型:不详难度:| 查看答案
如图,在梯形ABCD中,ADBC,AB=DC,BD⊥DC于D,且∠C=60°,若AD=5cm,求梯形的腰长.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.