当前位置:初中试题 > 数学试题 > 正方形 > 如图,点E是正方形ABCD的边BC上的一点,∠DAE的平分线AF交BC的延长线于点F,交CD于点G(1)若AB=8,BF=16,求CE的长;(2)求证:AE=B...
题目
题型:不详难度:来源:
如图,点E是正方形ABCD的边BC上的一点,∠DAE的平分线AF交BC的延长线于点F,交CD于点G
(1)若AB=8,BF=16,求CE的长;
(2)求证:AE=BE+DG.
答案
(1)∵四边形ABCD是正方形,
∴AB=BC=8,∠B=90°,ADBC,
∴∠DAG=∠F,
∵AF平分∠DAE,
∴∠DAG=∠EAF,
∴∠EAF=∠F,
∴AE=EF,
设CE=x,则BC=8-x,EF=AE=8+x,
在Rt△ABE中,由勾股定理得:82+(8-x)2=(8+x)2
x=2,
解CE=2;

(2)
证明:延长CB到M,使BM=DG,连接AM,
∵四边形ABCD是正方形,
∴∠D=∠ABM=90°,AD=AB,ABCD,
∴∠3=∠2+∠5=∠4,
在△ABM和△ADG中





AB=AD
∠ABM=∠D
BM=DG

∴△ABM≌△ADG,
∴∠4=∠∠M,∠1=∠6,
∵∠1=∠2(角平分线定义),
∴∠2=∠6,
∴∠4=∠M=∠3=∠2+∠5=∠6+∠5,
即∠M=∠MAE,
∴AE=BE,
∵BM=DG,
∴AE=BE+DG.
核心考点
试题【如图,点E是正方形ABCD的边BC上的一点,∠DAE的平分线AF交BC的延长线于点F,交CD于点G(1)若AB=8,BF=16,求CE的长;(2)求证:AE=B】;主要考察你对正方形等知识点的理解。[详细]
举一反三
如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM=3


2
,则MN的长为______.
题型:不详难度:| 查看答案
如图,A,B、C三点共线,正方形BCDE和ABFG的边长分别为2a、a,连接CE和CG,则图中阴影部分的面积是______.
题型:不详难度:| 查看答案
如图,已知四边形ABCD是四个角都是直角,四条边都相等的正方形,点E在BC上,且CE=
1
4
BC,点F是CD的中点,延长AF与BC的延长线交于点M.以下结论:①AB=CM;②AE=AB+CE;③S△AEF=
1
4
S四边形ABCF
;④∠AFE=90°,其中正确的结论的个数有(  )
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
如图,正方形ABCD中,G是CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE,连接BG并延长交DE于H.
(1)求证:∠BGC=∠DEC.
(2)若正方形ABCD的边长为1,试问当点G运动到什么位置时,BH垂直平分DE?
题型:不详难度:| 查看答案
如图,把边长为1的正方形ABCD的对角线AC分成n段,以每一段为对角线作小正方形,所有小正方形的周长之和为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.