当前位置:初中试题 > 数学试题 > 正方形 > 如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是______....
题目
题型:不详难度:来源:
如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是______.
答案
设CE=x,S△BEF=a,
∵CE=x,BE:CE=2:1,
∴BE=2x,AD=BC=CD=AD=3x;
∵BCAD∴∠EBF=∠ADF,
又∵∠BFE=∠DFA;
∴△EBF△ADF
∴S△BEF:S△ADF=(
BE
AD
)
2
=(
2x
3x
)
2
=
4
9
,那么S△ADF=
9
4
a.
∵S△BCD-S△BEF=S四边形EFDC=S正方形ABCD-S△ABE-S△ADF
9
2
x2-a=9x2-
1
2
×3x•2x-
9
4
a

化简可求出x2=
5
6
a

∴S△AFD:S四边形DEFC=
9
4
a
(
9
2
x2-a)
=
9
4
a
11
4
a
=9:11,故答案为9:11.
核心考点
试题【如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是______.】;主要考察你对正方形等知识点的理解。[详细]
举一反三
如图所示,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F按逆时针顺序),P为DE的中点,连接PC、PF.
(1)如图(1),E点在边BC上,则线段PC、PF的数量关系为______,位置关系为______(不需要证明).
(2)如图(2),将△BEF绕B点顺时针旋转α°(0<α<45),则线段PC、PF有何数量关系和位置关系?请写出你的结论并证明.
(3)如图(3),E点旋转到图中的位置,其它条件不变,完成图(3),则线段PC、PF有何数量关系和位置关系?直接写出你的结论,不需要证明.
题型:不详难度:| 查看答案
如图,正方形ABCD中,E、F分别在边BC、CD上,∠EAF=45°,BE=2,CF=3.求:正方形的边长.如图,正方形ABCD中,E、F分别在边BC、CD上,∠EAF=45°,BE=2,CF=3.求:正方形的边长.
题型:不详难度:| 查看答案
如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)当∠A=90°时,试判断四边形DFAE是何特殊四边形?并说明理由.
题型:不详难度:| 查看答案
如图,在正方形ABCD中,对角线AC、BD交于点D,CE平分∠ACD,分别交AD、BD于E、G,EFAC交CD于F,连接OE下列结论:①EF=AE,②∠AOE=∠AEO,③OG=
1
2
AE
,④S△ACE=2S△DCE⑤AB=(


2
+1)DG
.其中正确的是(  )
A.①③⑤B.①②④C.①③④D.②③⑤

题型:不详难度:| 查看答案
△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=______;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=______;
(3)求第10次剪取后,余下的所有小三角形的面积之和.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.