当前位置:初中试题 > 数学试题 > 平行四边形性质 > (11·肇庆)(本小题满分7分) 如罔7,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,...
题目
题型:不详难度:来源:
(11·肇庆)(本小题满分7分)
如罔7,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,
(1)求证:△BEC≌△DEC:
(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.
答案
解:(1)证明:∵四边形ABCD是正方形,∴CD=CB………………………1分
∵AC是正方形的对角线  ∴∠DCA=∠BCA………………2分
又CE=CE ∴△BEC≌△DEC………………………………4分
(2)∵∠DEB=140°,
由△BEC≌△DEC可得∠DEC=∠BEC=140°÷2=70°……………………………5分
∴∠AEF=∠BEC=70° ………………………………………………………………6分
又∵AC是正方形的对角线  ∠DAB=90°,∴∠DAC=∠BAC=90°÷2=45°
在△AEF中,∠AFE=180°―70°―45°=65°…………………………………………7分
解析

核心考点
试题【(11·肇庆)(本小题满分7分) 如罔7,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
(11·肇庆)(本小题满分8分)
如图8.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的而积为,求AC的长.
题型:不详难度:| 查看答案
(11·佛山)依次连接菱形的各边中点,得到的四边形是(              )
A.矩形B.菱形C.正方形D.梯形

题型:不详难度:| 查看答案
(11·佛山)在矩形ABCD中,两条对角线AC、BD相交于点O,若AB=OB=4,则AD= 
题型:不详难度:| 查看答案
(11·佛山)阅读材料
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;
比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;
我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=CD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
(1)写出筝形的两个性质(定义除外);
(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明;
题型:不详难度:| 查看答案
有甲、乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4)。将这两张纸条交
叉重叠地放在一起,重合部分为四边形,则的数量关系为          .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.