当前位置:初中试题 > 数学试题 > 平行四边形性质 > 如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E,F,∠EDF=60°,CF=4cm,AE=2cm,求∠A,AB,AD....
题目
题型:不详难度:来源:
如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E,F,∠EDF=60°,CF=4cm,AE=2cm,求∠A,AB,AD.
答案
在四边形DEBF中,
∵∠DEB+∠B+∠BFD+∠FDE=360°且DE⊥AB,DF⊥BC,∠EDF=60°,
∴∠B=120°.
又∵在▱ABCD中∠A=∠C且∠A+∠B=180°,
∴∠A=∠C=60°.
在RT△AED中,AE=2,
∴AD=
AE
cos60°
=4.
同理在三角形DCF中,AB=DC=8.
核心考点
试题【如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E,F,∠EDF=60°,CF=4cm,AE=2cm,求∠A,AB,AD.】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
已知:如图,在平行四边形ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF的长为(  )
A.6B.5C.4D.3

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.