当前位置:初中试题 > 数学试题 > 全等三角形的应用 > 如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于...
题目
题型:山东省中考真题难度:来源:
如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.
答案
证明:(1)在Rt△AFD和Rt△CEB中,
∵AD=BC,AF=CE,
∴Rt△AFD≌Rt△CEB;
(2)∵∠ABH+∠CBE=90°,∠ABH+∠BAH=90°,
∴∠CBE=∠BAH又∵AB=BC,∠AHB=∠CEB=90°
∴△ABH≌△BCE,
同理可得,△ABH≌△BCE∽△CDG≌△DAF,
∴S正方形ABCD=4S△ABH+S正方形HEGF=4××2×1+1×1=5;
(3)由(1)知,△AFD≌△CEB,故h1=h3
由(2)知,△ABH≌△BCE≌△CDG≌△DAF,
∴S正方形ABCD=4S△ABH+S正方形HEGF=4×(h1+h2)h1+h22=2h12+2h1h2+h22
核心考点
试题【如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于】;主要考察你对全等三角形的应用等知识点的理解。[详细]
举一反三
如图,在正方形ABCD中,E是BC上的一点,连结AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.
(1)求证CG=BH
(2)FC2=BF·GF;
(3)=
题型:山东省中考真题难度:| 查看答案
己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD交于点G.
(1)求证:BE=DF;
(2)当=时,求证:四边形BEFG是平行四边形.
题型:上海中考真题难度:| 查看答案
(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N,试探究线段D1M与线段D2N的数量关系,并加以证明。
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1,作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N,D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由。
②如图3,若将①中的”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)
题型:山东省中考真题难度:| 查看答案
如图,△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,BC,DE交于点O,则下列四个结论中,①∠1=∠2;②BC=DE;③△ABD∽△ACE;④A,O、C,E四点在同一个圆上,一定成立的有[     ]

A.1个
B.2个
C.3个
D.4个
题型:四川省中考真题难度:| 查看答案
已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
题型:重庆市中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.