当前位置:初中试题 > 数学试题 > 全等三角形的应用 > 已知:如图,在△ABC中,∠ACB=90°,AC=BC,AD平分∠CAB.求证:AB=AC+CD....
题目
题型:云南省期中题难度:来源:
已知:如图,在△ABC中,∠ACB=90°,AC=BC,AD平分∠CAB.求证:AB=AC+CD.
答案

证明:过D作DE⊥AB,垂足为E,
∴∠DEA=90°,
∵∠ACB=90°,AC=BC,AD平分∠CAB.
∴∠C=∠DEA,∠CAD=∠EAD,
∴△ACD≌△AED;
∴AC=AE,CD=DE;
∵AC=BC,∠ACB=90°,
∴∠B=45°,
∴∠BDE=45°;
∴CD=DE=EB;
∴AB=AE+EB=AC+CD.



核心考点
试题【已知:如图,在△ABC中,∠ACB=90°,AC=BC,AD平分∠CAB.求证:AB=AC+CD.】;主要考察你对全等三角形的应用等知识点的理解。[详细]
举一反三
如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.求证:BF=CE.
题型:云南省期中题难度:| 查看答案
已知:在△ABC中,∠ACB=90°,AC=BC,现将一块边长足够大的直角三角板的直角顶点置于AB的中点D处,两直角边分别经过点B、C,然后将三角板绕点D按顺时针方向旋转一个角度α(0°<a<90°),旋转后,直角三角板的直角边分别与AC、BC相交于点K、H,四边形CHOK是旋转过程中三角板与△ABC的重叠部分(如图1所示).那么,在上述旋转过程中:
(1)如图1,线段BH与CK具有怎样的数量关系?四边形CHOK的面积是否发生变化?请说明你发现的结论的理由.
(2)如图2,连接HK,
①若AK=12,BH=5,求△OKH的面积;
②若AC=BC=4,设BH=x,当△CKH的面积为2时,求x的值,并说出此时四边形CHOK是什么特殊四边形.
题型:四川省期中题难度:| 查看答案
如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,则∠A与∠ α的关系是(  )
[    ]
A.∠A=180°﹣∠ α
B.∠A=180°﹣2∠ α
C.∠A=90°﹣∠ α
D.∠A=90°﹣2∠ α
题型:云南省期末题难度:| 查看答案
如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:OB=OC.
题型:云南省期末题难度:| 查看答案
已知:如图,四边形ABCD是平行四边形,E、F是直线BD上的两点,且DE=BF,求证:AE=CF.
题型:云南省期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.