当前位置:初中试题 > 数学试题 > 全等三角形的判定 > 已知,如图AB=EF,BD=EC,AC=DF,则AC与DF之间有怎样的位置关系,试说明理由。...
题目
题型:四川省期中题难度:来源:
已知,如图AB=EF,BD=EC,AC=DF,则AC与DF之间有怎样的位置关系,试说明理由。
答案
解答:结论:AC∥DF;
证明:∵BD=EC,
∴BC=ED,
在△ACB和△FDE中,
 ∴△ACB≌△FDE(SSS),
∴∠ACB=∠FDE,
又∵∠ACB+∠ACD=∠FDE+∠FDC=180°,
∴∠ACD=∠FDC,
∴AC∥DF.
核心考点
试题【已知,如图AB=EF,BD=EC,AC=DF,则AC与DF之间有怎样的位置关系,试说明理由。】;主要考察你对全等三角形的判定等知识点的理解。[详细]
举一反三
已知,如图AB⊥AC,CD⊥AC,BE=DE,且∠BED=90°,则:
(1)求证:△AEB≌△CDE;
(2)试说明:AC=AB+CD。
题型:四川省期中题难度:| 查看答案
已知:如图1,在面积为3的正方形ABCD中,EF分别是BCCD边上的两点,AEBF于点G,且BE=1.
(1)求证:△ABE≌△BCF
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB"E"(如图2),使点E落在CD
上的点E'处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
题型:湖南省中考真题难度:| 查看答案
如图,在Rt△ABC中,AB =AC,D、E是斜边BC两点,且∠DAE= 45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE +DC= DE;④其中正确的是               
[     ]
A.②④    
B.①④   
C.②③    
D.①③
题型:专项题难度:| 查看答案
如图,B、C、E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG、DE.   
(1)观察猜想BG与DE之间大小关系,并证明你的结论;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请你说明理由.
  
题型:专项题难度:| 查看答案
如下图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是
[     ]
A.∠B=∠C
B.∠D=∠E
C.∠1=∠2
D.∠CAD=∠DAC
题型:四川省月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.