当前位置:初中试题 > 数学试题 > 二次函数与一元二次方程 > 已知二次函数y=x2+px+q(p,q为常数,△=p2-4q>0)的图象与x轴相交于A(x1,0),B(x2,0)两点,且A,B两点间的距离为d,例如,通过研究...
题目
题型:不详难度:来源:
已知二次函数y=x2+px+q(p,q为常数,△=p2-4q>0)的图象与x轴相交于A(x1,0),B(x2,0)两点,且A,B两点间的距离为d,例如,通过研究其中一个函数y=x2-5x+6及图象(如图),可得出表中第2行的相关数据.
(1)在表内的空格中填上正确的数;
(2)根据上述表内d与△的值,猜想它们之间有什么关系?再举一个符合条件的二次函数,验证你的猜想;
(3)对于函数y=x2+px+q(p,q为常数,△=p2-4q>0)证明你的猜想.聪明的小伙伴:你能再给出一种不同于(3)的正确证明吗?我们将对你的出色表现另外奖励3分.
答案
核心考点
试题【已知二次函数y=x2+px+q(p,q为常数,△=p2-4q>0)的图象与x轴相交于A(x1,0),B(x2,0)两点,且A,B两点间的距离为d,例如,通过研究】;主要考察你对二次函数与一元二次方程等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
y=x2+px+qpqx1x2d
y=x2-5x+6-561231
y=x2-
1
2
x
-
1
2
1
4
1
2
y=x2+x-2-2-23
(1)易得第三行q=0,x1=0,d=
1
2
;第四行为p=1,△=9,x2=1;

(2)猜想:d2=△.
例如:y=x2-x-2中;p=-1,q=-2,△=9;
由x2-x-2=0得x1=2,x2=-1,d=3,d2=9,
∴d2=△;

(3)证明.令y=0,得x2+px+q=0,
∵△>0
设x2+px+q=0的两根为x1,x2
则x1+x2=-p,x1•x2=q,
d2=(|x1-x2|)2=(x1-x22=(x1+x22-4x1•x2
=(-p)2-4q=p2-4q=△,
已知直线y=x与二次函数y=ax2-2x-1的图象的一个交点M的横坐标为1,则a的值为(  )
A.2B.1C.3D.4
已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(-1,-1),设线段AB的长为d.
(1)用含有p的式子表示q.
(2)求d2与p的关系式.
(3)当p为何值时,d2取得最小值,并求出最小值.
已知二次函数y=ax2+bx+c的图象经过A(2,4),其顶点的横坐标是
1
2
,它的图象与x轴交点为B(x1,0)和(x2,0),且x12+x22=13.求:
(1)此函数的解析式,并画出图象;
(2)在x轴上方的图象上是否存在着D,使S△ABC=2S△DBC?若存在,求出D的值;若不存在,说明理由.
如图,抛物线y=-x2+2(m+1)x+m+3与x轴交于A,B两点,若OA:OB=3:1,求m的值.______.
已知二次函数y=-x2+(m-2)x+m+1.
(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点.
(2)当m为何值时,这两个交点都在原点的左侧?
(3)当m为何值时,这个二次函数的图象的对称轴是y轴?