当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知:如图,点A(-2,-6)在反比例函数的图像上,如果点B也在此反比例函数图像上,直线AB与y轴相交于点C,且BC=2AC . (1)求点B的坐标;(2)如果...
题目
题型:上海期末题难度:来源:
已知:如图,点A(-2,-6)在反比例函数的图像上,如果点B也在此反比例函数图像上,直线AB与y轴相交于点C,且BC=2AC .
(1)求点B的坐标;
(2)如果二次函数的图像经过A、B两点,求此二次函数的解析式.
答案
(1)设反比例函数解析式为
      ∵点A(-2,-6)在反比例函数图像上,∴
        ∴,∴反比例函数解析式为
       当点B在第一象限时,
  过点A、B分别作AD//x轴,BE//x轴,AD、BE与y轴分别相交于D、E.
  则AD//BE,∴
  ∵BC=2AC,∴BE=2AD=2×2=4. 
  当时,,∴点B的坐标为(4,3).
   当点B在第三象限时,同理可求得点B的坐标为(-4,-3).
   ∴点B的坐标为(4,3)或(-4,-3);
(2)当点B为(4,3)时,
        ∴此时二次函数解析式为
       当点B为(-4,-3)时,(不符合题意,舍去)
      ∴二次函数解析式为
核心考点
试题【已知:如图,点A(-2,-6)在反比例函数的图像上,如果点B也在此反比例函数图像上,直线AB与y轴相交于点C,且BC=2AC . (1)求点B的坐标;(2)如果】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
四边形OABC是等腰梯形,OA∥BC,在建立如图的平面直角坐标系中,A(4,0),B(3,2),点M从O点以每秒2个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动,过点N作NP垂直于x轴于P点,连结AC交NP于Q,连结MQ。
(1)写出C点的坐标;
(2)若动点N运动t秒,求Q点的坐标(用含t的式子表示);
(3)求△AMQ的面积S与时间t的函数关系式,并写出自变量t的取值范围。
题型:浙江省期末题难度:| 查看答案
已知:⊙O的直径AB=8,⊙B与⊙O相交于点C、D,⊙O的直径CF与⊙B相交于点E,设⊙B的半径为x,OE的长为y,
(1)如图,当点E在线段OC上时,求y关于x的函数解析式,并写出定义域;
(2)当点E在直径CF上时,如果OE的长为3,求公共弦CD的长;
(3)设⊙B与AB相交于G,试问△OEG能否为等腰三角形?如果能够,请直接写出的长度(不必写过程);如果不能,请简要说明理由.
题型:上海期末题难度:| 查看答案
善于不断改进数学学习方法的小慧发现,对解数学题进行回顾反思,学习效果更好.某一天自习课小慧有20分钟时间可用于数学学习.假设小慧用于解题的时间(单位:分钟)与学习收益量的关系如图1所示,用于回顾反思的时间(单位:分钟)与学习收益量的关系如图2所示(其中是抛物线的一部分,为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
(1)求小慧解题的学习收益量与用于解题的时间之间的函数关系式;
(2)求小慧回顾反思的学习收益量与用于回顾反思的时间 x 的函数关系式;
(3)问小慧如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?
题型:期末题难度:| 查看答案
把抛物线y=x2向上平移2个单位,所得的抛物线的表达式为 [     ]
A. y=x2+2
B. y=x2-2
C. y=(x+2)2
D. y=(x-2)2
题型:期末题难度:| 查看答案
如图, 中,O是坐标原点,A,B
(1)以原点O为位似中心,将放大,使变换后得到的与的位似比为, 且D在第一象限内,则C点坐标为( ____,____); D点坐标为(____,____);
(2)将(1)中沿折叠,点C落在第一象限的E处,画出图形,并求出点E的坐标;
(3)若抛物线过(2)中的E、C两点,求抛物线的解析式;
(4)在(3)中的抛物线EC段(不包括C、E点)上是否存在一点M,使得四边形MEOC面积最大?若存在,求出这个最大值,并求出此时M点的坐标;若不存在,请说明理由。
题型:期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.