当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在平面直角坐标系中,将直线沿y轴向上平移1个单位,与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC。(1)点A的坐标为(    ),...
题目
题型:江苏模拟题难度:来源:
如图,在平面直角坐标系中,将直线沿y轴向上平移1个单位,与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC。
(1)点A的坐标为(    ),点B的坐标为(    );
(2)求以C为顶点,经过B点的抛物线的函数关系式;
(3)在(2)中的抛物线上,是否存在点P,使△PAB的面积与△ABC的面积相等?如果存在,求出此时点P的坐标;如果不存在,请说明理由。
答案
解:(1)
(2)设y=a(x-m)2+n,
∵点C坐标为(,2),
∴y=a(x-2+2,
∵B(0,1),∴1=a(0-2+2,解得a=-

(3)存在,如图,①点B关于直线AC的对称点P1,1),
②将△ABC沿直线AB对折,显然点C的对称点为点D(0,-1),过点D作DP2∥AB,交抛物线于点P2、P3,则点P2、P3也是符合要求的点,
设直线DP2的解析式为y=kx+b,则k=,b=-1,
因此解析式为,解方程:

因此P2的坐标为(),P3的坐标为(),即符合条件的P点有3个。
核心考点
试题【如图,在平面直角坐标系中,将直线沿y轴向上平移1个单位,与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC。(1)点A的坐标为(    ),】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,二次函数y=-x2+px+q的图象与x轴交于A、B两点,与y轴交于点C(0,3),顶点M在第一象限,∠ABC=30°。
⑴求点A、B的坐标和二次函数的关系式;
⑵设直线与y轴的交点是D,在线段BC上任取一点E(不与B、C重合),经过A,B,E三点的圆交直线BD于点F,
①试判断△AEF的形状,并说明理由;
②设BF=m,m的取值范围是多少?(直接写出,无需过程)
题型:江苏模拟题难度:| 查看答案
一条抛物线的开口向上,与y轴交点的纵坐标为-1,且经过(1,3),那么它的解析式可以是 [     ]
A.y=-x2+3x-1
B.y=-x2+3x+1
C.y=-x2+2x-1
D.y=x2+x+1
题型:浙江省模拟题难度:| 查看答案
“新上海”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克。由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系。

(1) 试求出y与x的函数关系;
(2) 设“新上海”超市购进该绿色食品每天获利p元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
题型:福建省模拟题难度:| 查看答案
如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过点A(-1,0)、B(4,0),与y轴交于点C,直线y=x+2交y轴交于点D,交抛物线于E、F两点,点P为线段EF上一个动点(与E、F不重合),PQ∥y轴与抛物线交于点Q。
(1)求抛物线的解析式;
(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;
(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由。
题型:河北省模拟题难度:| 查看答案
如图,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于点B(1,m)、C(2,2)。
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动线路,问是否存在点P,使得△POA的面积等于△PON的面积的?若存在,请求出点P的坐标;若不存在,请说明理由。
题型:河北省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.