当前位置:初中试题 > 数学试题 > 二次函数的应用 > 恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地,上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷...
题目
题型:湖北省中考真题难度:来源:
恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地,上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中,据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售。
(1)若存放天x后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?
(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
答案
解:(1)由题意得y与x之间的函数关系式为:

 (1≤x≤110,且x为整数);
(2)由题意得:-10×2000-340x=22500
解方程得:x1=50,x2=150(不合题意,舍去)
李经理想获得利润2250元需将这批香菇存放50天后出售;
(3)设最大利润为W,由题意得
 -10 ×2000-340x

当x=100时,
∵100天<110天,
∴存放100天后出售这批香菇可获得最大利润30000元。
核心考点
试题【恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地,上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是

[     ]

A、ab<0
B、ac<0
C、当x<2时,函数值随x增大而增大;当x>2时,函数值随x增大而减小
D、二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根
题型:湖北省中考真题难度:| 查看答案
如图所示,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点。
(1)求这个二次函数的表达式;
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;
(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积。
题型:湖北省中考真题难度:| 查看答案
某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件。
(1)假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x间的函数关系式,并注明x的取值范围;
(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)
题型:湖北省中考真题难度:| 查看答案
如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3)。
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积。
题型:山东省中考真题难度:| 查看答案
已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)。
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由。
题型:湖北省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.