当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图所示,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线。(1)求抛...
题目
题型:四川省中考真题难度:来源:
如图所示,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线。
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由。

答案
解:(1)∵以AB为直径作⊙O′,交y轴的负半轴于点C,
∴∠OCA+∠OCB=90°,
又∵∠OCB+∠OBC=90°,
∴∠OCA=∠OBC,
又∵∠AOC= ∠COB=90°,
∴ΔAOC∽ ΔCOB,

又∵A(-1,0),B(9,0),

解得OC=3(负值舍去),
∴C(0,-3),
设抛物线解析式为y=a(x+1)(x-9),
∴-3=a(0+1)(0-9),
解得a=
∴二次函数的解析式为y=(x+1)(x-9),即y=x2-x-3;
(2)∵AB为O′的直径,且A(-1,0),B(9,0),
∴OO′=4,O′(4,0), 
∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,
∴∠BCD=∠BCE=×90°=45°,
连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=AB=5,
∴D(4,-5),
∴设直线BD的解析式为y=kx+b(k≠0)
 
解得
∴直线BD的解析式为y=x-9;
(3)假设在抛物线上存在点P,使得∠PDB=∠CBD,
设射线DP交⊙O′于点Q,则
分两种情况(如答案图1所示):
①∵O′(4,0),D(4,-5),B(9,0),C(0,-3),
∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合,
因此,点Q1(7,-4)符合
∵D(4,-5),Q1(7,-4),
∴用待定系数法可求出直线DQ1解析式为y=x-
解方程组
∴点P1坐标为(),
[坐标为()不符合题意,舍去],
②∵Q1(7,-4),
∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合
∵D(4,-5),Q2(7,4),
∴用待定系数法可求出直线DQ2解析式为y=3x-17,
解方程组
∴点P2坐标为(14,25),
[坐标为(3,-8)不符合题意,舍去],
∴符合条件的点P有两个:P1),P2(14,25)。
核心考点
试题【如图所示,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线。(1)求抛】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,从地面垂直向上抛出一小球,小球的高度(单位:米)与小球运动时间(单位:秒)的函数关系式是,那么小球运动中的最大高度(    )。

题型:浙江省中考真题难度:| 查看答案
锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)。
(1)△ABC中边BC上高AD=______;
(2)当x=______ 时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
题型:湖北省中考真题难度:| 查看答案
把抛物线向右平移2个单位,再向上平移1个单位,所得的抛物线的解析式为

[     ]

A.
B.
C.
D.
题型:湖南省中考真题难度:| 查看答案
如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC边上的一个动点(不与B、C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,连接DE,DF。
(1)求证:△BEF∽△CEG;
(2)当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由;
(3)设BE=x,△DEF的面积为y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?
题型:湖南省中考真题难度:| 查看答案
如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3。

(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标。
题型:湖南省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.