当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在平面直角坐标系中,直线y=-2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C。(1)求点C的坐标;(2)求△OAC的面积;(3)若P为线段...
题目
题型:江苏中考真题难度:来源:
如图,在平面直角坐标系中,直线y=-2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C。
(1)求点C的坐标;
(2)求△OAC的面积;
(3)若P为线段OA(不含O、A两点)上的一个动点,过点P作PD∥AB交直线OC于点D,连接PC,设OP=t,△PDC的面积为S,求S与t之间的函数关系式;S是否存在最大值?如果存在,请求出来;如果不存在,请简要说明理由。
答案
解:(1)由,得x=4,
所以y=4,所以点A的坐标为(4,4);
(2)由-2x+12=0得x=6,
所以S△OAC=
(3)如图,分别过点C、D作OA的垂线,垂足分别为M、N点,因为PD∥AC,所以
,所以
所以


当时,S有最大值,最大值为3。
核心考点
试题【如图,在平面直角坐标系中,直线y=-2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C。(1)求点C的坐标;(2)求△OAC的面积;(3)若P为线段】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2,y与x的函数图象如图2所示。
(1)观察图象,当x为何值时,窗户透光面积最大?
(2)当窗户透光面积最大时,窗框的另一边长是多少?

题型:吉林省中考真题难度:| 查看答案
北方某水果商店从南方购进一种水果,其进货成本是每吨0.4万元,根据市场调查这种水果在北方市场上的销售量y(吨)与每吨的销售价x(万元)之间的函数关系如下图所示:

(1)求出销售量y与每吨销售价x之间的函数关系式;
(2)如果销售利润为w(万元),请写出w与x之间的函数关系式;
(3)当每吨销售价为多少万元时,销售利润最大?最大利润是多少?
题型:辽宁省中考真题难度:| 查看答案
如图,二次函数y=x2+bx+c的图象经过点M(1,-2)、N(-1,6)。
(1)求二次函数y=x2+bx+c的关系式;
(2)把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0),(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离。

题型:吉林省中考真题难度:| 查看答案
如图,在平面直角坐标系中,两个函数y=x,y=-x+6的图象交于点A,动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ∥x轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S。
(1)求点A的坐标;
(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式;
(3)在(2)的条件下,S是否有最大值若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由;
若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积最大时,运动时间t满足的条件是_________。
题型:吉林省中考真题难度:| 查看答案
如图1,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动.设运动时间为t(s)。
(1)求正方形ABCD的边长;
(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(s)之间的函数图象为抛物线的一部分(如图2所示),求P,Q两点的运动速度;
(3)求(2)中面积S(平方单位)与时间t(s)的函数解析式及面积S取最大值时点P的坐标;
(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿着这两边运动时,能使∠OPQ=90°的点P有_______个。
(抛物线y=ax2+bx+c(a≠0)的顶点坐标是

题型:吉林省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.