当前位置:初中试题 > 数学试题 > 二次函数的应用 > 在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工...
题目
题型:湖南省中考真题难度:来源:
在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:
(年获利=年销售收入﹣生产成本﹣投资成本)
(1)当销售单价定为28元时,该产品的年销售量为多少万件?
(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?
(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.
答案

解:(1)∵25≦28≦30,

∴把28代入y=40﹣x得,
∴y=12(万件),
答:当销售单价定为28元时,该产品的年销售量为12万件;
(2)①当 25≦x≦30时,
W=(40﹣x)(x﹣20)﹣25﹣100=﹣x2+60x﹣925=﹣(x﹣30)2﹣25,
故当x=30时,W最大为﹣25,及公司最少亏损25万;
②当30<x≤35时,
W=(25﹣0.5x)(x﹣20)﹣25﹣100=﹣x2+35x﹣625=﹣(x﹣35)2﹣12.5,
故当x=35时,W最大为﹣12.5,及公司最少亏损12.5万;
对比①,②得,投资的第一年,公司亏损,最少亏损是12.5万;
答:投资的第一年,公司亏损,最少亏损是12.5万;
(3)①当 25≤x≤30时,
W=(40﹣x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+59x﹣782.5,
令W=67.5,则﹣x2+59x﹣782.5=67.5
化简得:x2﹣59x+850=0 ,
解得: x1=25;x2=34,
此时,当两年的总盈利不低于67.5万元,25≦x≦30;
②当30<x≤35时,
W=(25﹣0.5x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+35.5x﹣547.5,
令W=67.5,则﹣x2+35.5x﹣547.5=67.5,
化简得:x2﹣71x+1230=0  
解得:x1=30;x2=41,
此时,当两年的总盈利不低于67.5万元,30<x≦35,
答:到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是25≦x≦30或
30<x≦35.



核心考点
试题【在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.
(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由。
题型:江苏中考真题难度:| 查看答案
如图,已知二次函数的图像过点A(-4,3),B(4,4).
(1)求二次函数的解析式:
(2)求证:△ACB是直角三角形;
(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D、为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由。
题型:湖南省中考真题难度:| 查看答案
如图半径分别为m,n(0<m<n)的两圆⊙O1和⊙O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,⊙O1与x轴,y轴分别切于点M,点N,⊙O2与x轴,y轴分别切于点R,点H.
(1)求两圆的圆心O1,O2所在直线的解析式;
(2)求两圆的圆心O1,O2之间的距离d;
(3)令四边形PO1QO2的面积为S1,四边形RMO1O2的面积为S2
试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为
的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.
题型:湖南省中考真题难度:| 查看答案
如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是(    ).
题型:江苏中考真题难度:| 查看答案
如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B左边),与y轴交于点C.
(1)写出二次函数L1的开口方向、对称轴和顶点坐标;
(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条相同的性质;②若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.
题型:江西省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.