当前位置:初中试题 > 数学试题 > 二次函数的应用 > 某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图1,其中A(10,5),B(130,5),C(135,0). (1)求该同学骑自行车上...
题目
题型:湖北省期末题难度:来源:
某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图1,其中A(10,5),B(130,5),C(135,0).
(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度?时间);
(3)如图2,直线x=t(0≤t≤135),与图1的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式.
答案
解:(1)v=
(2)OA段平均速度为2m/s,BC段的为2.5m/s,
          2×10+5×(130﹣10)+2.5×5=632.5m;
(3)S=
核心考点
试题【某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图1,其中A(10,5),B(130,5),C(135,0). (1)求该同学骑自行车上】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由. (注意:本题中的结果均保留根号).
题型:湖北省期末题难度:| 查看答案
明珠大剧场座落在聊城东昌湖西岸,其上部为能够旋转的拱形钢结构,并且具有开启、闭合功能,全国独﹣无二,如图1.舞台顶部横剖面拱形可近似看作抛物线的一部分,其中舞台高度1.15米,台口高度13.5米,台口宽度29米,如图2.以ED所在直线为x轴,过拱顶A点且垂直于ED的直线为y轴,建立平面直角坐标系.
(1)求拱形抛物线的函数关系式;
(2)舞台大幕悬挂在长度为20米的横梁MN上,其下沿恰与舞台面接触,求大幕的高度?(精确到0.01米)
题型:重庆市期末题难度:| 查看答案
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点 _________ (填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
题型:重庆市期末题难度:| 查看答案
已知x1,x2是关于x的方程(x﹣2)(x﹣m)=(p﹣2)(p﹣m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.
题型:北京期中题难度:| 查看答案
已知抛物线 y=ax2+bx+c经过点A(0,3),B(4,3),C(1,O).求:
(1)该抛物线的解析式;
(2)它的图象的顶点坐标,对称轴方程;
(3)y<0时x的取值范围.
题型:北京期中题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.