当前位置:初中试题 > 数学试题 > 二次函数的应用 > 某工厂的某件产品按质量分成10个档次,生产第一档次(即最低档档次)的产品一天生产76件,每件利润10元,每提高一个档次,利润每件增加2元.(1)当每件利润为16...
题目
题型:不详难度:来源:
某工厂的某件产品按质量分成10个档次,生产第一档次(即最低档档次)的产品一天生产76件,每件利润10元,每提高一个档次,利润每件增加2元.
(1)当每件利润为16元时,此产品质量在第几档次?
(2)由于生产工序不同,此产品每提高一个档次,一天生产量减少4件,若生产第x档的产品一天的利润为y元(其中x为整数,且1≤x≤10),求出y关于x的函数解析式;
(3)若生产某档次产品一天的总利润为1080元,该工厂生产的产是第几档的产品?
(4)为了获得最大的利润,厂长决定每天都生产第10档次的产品,厂长的这一决定是否正确?你是怎样看待这个问题的?
答案
解(1)当每件利润为16元时,利润增加16-10=6元,
因为每提高一个档次,利润每件增加2元,所以提高了6÷2=3档,
所以此产品质量在第4档次;
(2)据题意可得y=[10+2(x-1)][76-4(x-1)],
整理,得y=-8x2+128x+640;
(3)当利润是1080元时,即-8x2+128x+640=1080
解得x1=5,x2=11,
因为x=11>10,不符合题意,舍去.
因此取x=5,
当生产产品的质量档次是在第5档次时,一天的总利润为1080元;
(4)为了获得最大的利润,厂长决定每天都生产第10档次的产品,厂长的这一决定不正确,
理由如下:
∵y=-8(x-8)2+1152,a=-8<0,
∴当x=8时,y最大=1152(元),
∴生产第八档次是,一天的总利润最大,最大利润是1152元,而不是10档次的产品.
核心考点
试题【某工厂的某件产品按质量分成10个档次,生产第一档次(即最低档档次)的产品一天生产76件,每件利润10元,每提高一个档次,利润每件增加2元.(1)当每件利润为16】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
写出一个开口向上,且对称轴为直线x=2的二次函数解析式______.
题型:不详难度:| 查看答案
901班小华的爸爸在国际商贸城开专卖店专销某种品牌的计算器,进价12元∕只,售价20元∕只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如:某人买20只计算器,于是每只降价0.10×(20-10)=1元,就可以按19元∕只的价格购买),但是最低价为16元∕只.
(1)顾客一次至少买多少只,才能以最低价购买?
(2)写出当一次购买x只时(x>10),利润y(元)与购买量x(只)之间的函数关系式.
(3)星期天,小华来到专卖店勤工俭学,上午做成了两笔生意,一是向顾客甲卖了46只,二是向顾客乙卖了50只,记账时小华发现卖50只反而比卖46只赚的钱少.为了使每次卖得越多赚钱越多,在其他促销条件不变的情况下,最低价16元∕只至少要提高到多少?为什么?
题型:不详难度:| 查看答案
如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于(  )
A.8B.14C.8或14D.-8或-14
题型:不详难度:| 查看答案
某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万.该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,第2年为4万元.
(1)求y的解析式;
(2)投产后,这个企业在第几年就能收回投资?
题型:安徽难度:| 查看答案
自变量为x的二次函数y=ax2+(6a-2)x+9a-7(a>0).
(1)若a=1,-4≤x≤3,求函数值y的最大值与最小值;并分别指出所对应的自变量x的值;
(2)当a变化时,该二次函数图象是否经过定点?若是,请求出定点坐标;若不是,请说明理由;
(3)若该二次函数图象与x轴有两个不同的交点,而且两交点的横坐标均小于-1,求a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.