当前位置:初中试题 > 数学试题 > 二次函数的应用 > 某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.(1)若该...
题目
题型:不详难度:来源:
某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.
(1)若该商品在120元基础上涨价x元,求所获利润y1(元)与x(元)之间的函数关系式;
(2)若该商品在120元基础上降价x元,求所获利润y2(元)与x(元)之间的函数关系式;
(3)为获利最大,商店应将价格定为多少元?
答案
(1)y1=(120+x-100)(300-10x)=-10x2+100x+6000;
(2)y2=(120-x-100)(300+30x)=-30x2+300x+6000;
(3)当涨价x=5(元)时,所获利润y1的最大值=6250(元);
当降价x=5(元)时,所获利润y2的最大值=6750(元).
∴为获利最大,应降价5元,即将价格定为115元.
核心考点
试题【某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.(1)若该】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知某商品定价(a元/件)上涨2x%,其销售量(b件)便相应减少x%.按规定,税金是从销售额中按一定的比例缴纳,如果这种商品的定价无论如何变化,从销售额中扣除税金后所得的总额总比涨价前的销售额少,求这时生产率P的取值范围(精确到0.1%).
题型:不详难度:| 查看答案
已知抛物线C1的解析式为y1=x2+2x-1,并与x轴交于A、B两点(A点位于B点左边).抛物线C2的解析式为y2=x2+bx+c,其图象与抛物线C1关于y轴对称,并与x轴交于C、D两点(C点位于D点左边).抛物线C2与抛物线C1相交于点E.
(1)求抛物线C2的解析式;
(2)求△ADE的面积.
题型:不详难度:| 查看答案
已知抛物线y=-x2+(m-4)x+2m+4与x轴交于点A(x1,0)、B(x2,0)两点,与y轴交于点C,且x1<x2,x1+2x2=0.若点A关于y轴的对称点是点D.
(1)求过点C、B、D的抛物线的解析式;
(2)若P是(1)中所求抛物线的顶点,H是这条抛物线上异于点C的另一点,且△HBD与△CBD的面积相等,求直线PH的解析式.
题型:重庆难度:| 查看答案
已知抛物线y=x2+(m-1)x-
1
4
的顶点的横坐标是2,则m的值是______.
题型:苏州难度:| 查看答案
若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为(  )
A.y=-x2+2x-5B.y=ax2-2ax+a-3(a>0)
C.y=-2x2-4x-5D.y=ax2-2ax+a-3(a<0)
题型:杭州难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.