当前位置:初中试题 > 数学试题 > 二次函数的应用 > 某商场销售一种成本为每千克40元的水产品.据市场分析,按每千克50元销售,一个月能售出500千克;在此基础上,销售单价每涨1元,月销售量就减少10千克.针对这种...
题目
题型:不详难度:来源:
某商场销售一种成本为每千克40元的水产品.据市场分析,按每千克50元销售,一个月能售出500千克;在此基础上,销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,求月销售利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不写处x的取值范围).
(3)商场销售此产品时,要想每月成本不超过10000元,且月销售利润达到8000元,销售单价应定为多少元?
答案
(1)销售量:500-5×10=450(kg);
销售利润:450×(55-40)=450×15=6750(元);

(2)设销售单价定为每千克x元,获得利润为y元,则:
y=(x-40)[500-(x-50)×10],
=(x-40)(1000-10x),
=-10x2+1400x-40000;

(3)由于水产品不超过10000÷40=250kg,定价为x元,
则(x-40)[500-10(x-50)]=8000,
解得:x1=80,x2=60,
当x1=80时,月成本为:40×[500-(80-50)×10]=8000(元)<10000(元),
故销售单价定为每千克80元时,月成本不超过10000元,
当x2=60时,月成本为:40×[500-(60-50)×10]=16000(元)>10000(元),
故销售单价不能定为每千克60元.
综上所述:销售单价定为每千克80元.
核心考点
试题【某商场销售一种成本为每千克40元的水产品.据市场分析,按每千克50元销售,一个月能售出500千克;在此基础上,销售单价每涨1元,月销售量就减少10千克.针对这种】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
(t007•呼伦贝尔)某车间有t0名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利t4元.现要求加工甲种零件的人数不少于加工乙种零件人数的t倍,设每天所获利润为y元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?
题型:不详难度:| 查看答案
(6)一辆宽6m的货车要通过跨度为8m、拱高为4m的单行抛物线隧道(从正中通过),为了保证安全,车顶离隧道顶部至少要t.6m的距离,货车的限高为多少?
(6)若将(6)中的单行道改为双行道,即货车必须从隧道中线的右侧通过,货车的限高应是多少?
题型:不详难度:| 查看答案
已知抛物线y=
1
2
x2+bx+c经过x轴上点A(-2,0),B(4,0),与y轴交于点C.
(1)求a、b的值;
(2)试判断△BOC的外接圆P与直线AC的位置关系,并说明理由;
(3)将△AOC绕点O旋转一周,旋转过程中,AC对应的直线平行于BC,试求旋转后对应的点A的坐标.
题型:不详难度:| 查看答案
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MNBC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
题型:不详难度:| 查看答案
已知抛物线的顶点为(1,-3),且与y轴交于点(0,1),则抛物线的解析式为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.