当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y...
题目
题型:不详难度:来源:
如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x-1交抛物线于点M、N两点,过线段MN上一点P作y轴的平行线交抛物线于点Q.
(1)求此抛物线的解析式及顶点D的坐标;
(2)问点P在何处时,线段PQ最长,最长为多少;
(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.
答案
(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0)两点,交y轴于点C(0,3),由题意,得





0=a-b+c
0=9a+3b+c
3=c

解得:





a=-1
b=2
c=3

∴抛物线的解析式为:y=-x2+2x+3,
∴y=-(x-1)2+4,
∴D(1,4);

(2)∵PQ⊥x轴,
∴P、Q的横坐标相同,
∵P点在直线y=x-1上,设P(a,a-1),则Q(a,-a2+2a+3),
∴PQ=-a2+2a+3-a+1=-a2+a+4,
∴PQ=-(a-
1
2
2+
17
4

∴当a=
1
2
时,线段PQ最长为
17
4
,则P点坐标为(
1
2
,-
1
2
);

(3)∵E为线段OC上的三等分点,且OC=3,
∴E(0,1)或E(0,2),
设P(p,p-1)(在y=x-1上),则Q(p,-p2+2p+3).
当E(0,1)时,
∵EP=EQ,
∴(p-0)2+(p-1-1)2=(p-0)2+(-p2+2p+3-1)2
∴p2+(p-2)2=p2+(p2-2p-2)2
(p-2)2=(p2-2p-2)2
①当 p2-2p-2=p-2时,
∴p(p-3)=0,
∴p=0或3,
当p=0,P(0,-1),Q(0,3),
当p=3,P(3,2),Q(3,0),
过线段MN上一点P作y轴的平行线交抛物线于点Q.
∵直线y=x-1交抛物线于点M、N两点,
∴x-1=-x2+2x+3,
解得:x1=
1-


17
2
,x2=
1+


17
2

M的横坐标为
1-


17
2
,N点的横坐标为
1+


17
2

∴P点横坐标:大于等于
1-


17
2
小于等于
1+


17
2

∴P(3,2),Q(3,0)不符合要求舍去;
②p2-2p-2=-p+2,
整理得:p2-p-4=0,
解得:P1=
1-


17
2
,p2=
1+


17
2

∵直线y=x-1交抛物线于点M、N两点,
∴x-1=-x2+2x+3,
解得:x1=
1-


17
2
,x2=
1+


17
2

M的横坐标为
1-


17
2
,N点的横坐标为
1+


17
2

∵过线段MN上一点P作y轴的平行线交抛物线于点Q.
∴P点横坐标:大于等于
1-


17
2
小于等于
1+


17
2

当E(0,2)时,
∵EP=EQ,
∴(p-0)2+(p-1-2)2=(p-0)2+(-p2+2p+3-2)2
p2+(p-3)2=p2+(p2-2p-1)2
∴(p-3)2=(p2-2p-1)2
③当 p2-2p-1=p-3时,
∴(p-1)(p-2)=0
∴p=1或2.
当p=1时,P(1,0),Q(1,4)
当p=2时,P(2,1),Q(2,3)
④p2-2p-1=-p+3
p2-p-4=0,
解得:P1=
1-


17
2
<-1,p2=
1+


17
2
>2,
P(
1-


17
2
-


17
-1
2
)或(
1+


17
2


17
-1
2
).
综上所述,P点的坐标为:P(0,-1),P(1,0),P(2,1),P(
1-


17
2
-


17
-1
2
)或(
1+


17
2


17
-1
2
).
∵点P在线段MN上,
∴P点的坐标为:P(0,-1),P(1,0),P(2,1).
核心考点
试题【如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.
(1)当AB的中点落在y轴时,求c的取值范围;
(2)当AB=2


2
,求c的最小值,并写出c取最小值时抛物线的解析式;
(3)设点P(t,T)在AB之间的一段抛物线上运动,S(t)表示△PAB的面积.
①当AB=2


2
,且抛物线与直线的一个交点在y轴时,求S(t)的最大值,以及此时点P的坐标;
②当AB=m(正常数)时,S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此时点P的坐标(t,T)满足的关系,若不存在说明理由.
题型:不详难度:| 查看答案
已知二次函数的图象如图所示.
(1)求二次函数的解析式及抛物线顶点M的坐标;
(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t的取值范围;
(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;
(4)将△OAC补成矩形,使上△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).
题型:不详难度:| 查看答案
如图,⊙M是以点M(4,0)为圆心,5个单位长度为半径的圆.⊙M与x轴交于点A、B(A在B的左侧),⊙M与y轴的正半轴交于点C.
求:(1)点A、B、C的坐标;
(2)经过点A、B、C三点的抛物线的解析式.
题型:不详难度:| 查看答案
二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).
(1)试求a,b所满足的关系式;
(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的
5
4
倍时,求a的值;
(3)是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:
(1)求抛物线的解析式;
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.