当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,二次函数y=x2+bx+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,顶点为M,△MAB为直角三角形,图象的对称轴为直线x=-2,点P是抛物...
题目
题型:不详难度:来源:
如图,二次函数y=x2+bx+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,顶点为M,△MAB为直角三角形,图象的对称轴为直线x=-2,点P是抛物线上位于A,C两点之间的一个动点,则△PAC的面积的最大值为(  )
A.
27
4
B.
11
2
C.
27
8
D.3

答案
∵x=-
b
2a
=-2,且a=1,∴b=4;
则,抛物线:y=x2+4x+c;
∴AB=xB-xA=


(xA+xB)2-4xAxB
=


16-4c
=2


4-c
,点M(-2,c-4);
∵抛物线是轴对称图形,且△MAB是直角三角形,
∴△MAB必为等腰直角三角形,则有:AB=2


4-c
=2|c-4|,
解得:c=3;
∴抛物线:y=x2+4x+3,且A(-3,0)、B(-1,0)、C(0,3).
过点P作直线PQy轴,交直线AC于点Q,如右图;
设点P(x,x2+4x+3),由A(-3,0)、C(0,3)易知,直线AC:y=x+3;
则:点Q(x,x+3),PQ=(x+3)-(x2+4x+3)=-x2-3x;
S△PAC=
1
2
PQ×OA=
1
2
×(-x2-3x)×3=-
3
2
(x+
3
2
2+
27
8

∴△PAC有最大面积,且值为
27
8

故选C.
核心考点
试题【如图,二次函数y=x2+bx+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,顶点为M,△MAB为直角三角形,图象的对称轴为直线x=-2,点P是抛物】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,一次函数y=x+2的图象分别交轴、轴于A、B两点,O1为以OB为边长的正方形OBCD的对角线的交点.两动点P、Q同时从A点出发在四边形ABCD上运动,其中动点P以每秒


2
个单位长度的速度沿A→B→A运动后停止,动点Q以每秒2个单位长度的速度沿A→O→D→C→B运动.AO1交于轴于点E,设P、Q运动的时间为t秒.
(1)求经过A、B、C三点的抛物线的解析式;
(2)求出E点的坐标和S△ABE的值;
(3)当Q点运动在折线AD→DC上时,是否存在某一时刻t(秒),使得S△ABE:S△APQ=4:3?若存在,请确定t的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度.他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直地接触地面和门的内壁,并测得AC=1m.小强画出了如图的草图,请你帮他算一算门的高度OE(精确到0.1m).
题型:不详难度:| 查看答案
已知抛物线y=-x2-2x+a(a>0)与y轴相交于点A,顶点为M.直线y=
1
2
x+
1
2
a
与x轴相交于B点,与直线AM相交于N点;直线AM与x轴相交于C点
(1)求M的坐标与MA的解析式(用字母a表示);
(2)如图,将△NBC沿x轴翻折,若N点的对应点N′恰好落在抛物线上,求a的值;
(3)在抛物线y=-x2-2x+a(a>0)上是否存在一点P,使得以P、B、C、N为顶点的四边形是平行四边形?若存在,求出a的值;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.
题型:不详难度:| 查看答案
已知二次函数y=ax2+bx的图象经过点(2,0)、(-1,6)
(1)求二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.