当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运...
题目
题型:不详难度:来源:
如图,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,请解答下面的问题,并写出探索的主要过程:
(1)经过多少时间后,P、Q两点的距离为5


2
cm2
(2)经过多少时间后,S△PCQ的面积为15cm2
(3)请用配方法说明,何时△PCQ的面积最大,最大面积是多少?
答案
(1)设经过ts后,P、Q两点的距离为5


2
cm,
ts后,PC=7-2t cm,CQ=5t cm,
根据勾股定理可知PC2+CQ2=PQ2
代入数据(7-2t)2+(5t)2=(5


2
)
2

解得t=1或t=-
1
29
(不合题意舍去);

(2)设经过ts后,S△PCQ的面积为15cm2
ts后,PC=7-2t cm,CQ=5t cm,
S△PCQ=
1
2
×PC×CQ
=
1
2
×(7-2t)×5t=15
解得t1=2,t2=1.5,
经过2或1.5s后,S△PCQ的面积为15cm2

(3)设经过ts后,△PCQ的面积最大,
ts后,PC=7-2t cm,CQ=5t cm,
S△PCQ=
1
2
×PC×CQ=
1
2
×(7-2t)×5t=
5
2
×(-2t2+7t)
当t=-
b
2a
时,即t=
7
2×2
=1.75s时,△PCQ的面积最大,
即S△PCQ=
1
2
×PC×CQ=
1
2
×(7-2×1.75)×5×1.752=
245
16

当时间为1.75秒时,最大面积为
245
16
核心考点
试题【如图,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,以边长为1的正方形ABCO的两边OA、OC所在直线为轴建立坐标系,点O为原点.
(1)求以A为顶点,且经过点C的抛物线解析式;
(2)求(1)中的抛物线与对角线OB交于点D的坐标.
题型:不详难度:| 查看答案
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知关于x的二次函数y=x2+(k-1)x+2k-1的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,其中k是一元二次方程p2-p-2=0的根,且k<0.
(1)求这个二次函数的解析式及A、B两点的坐标;
(2)若直线l:y=mx(m≠0)与线段BC交于点D(点D不与点B、C重合),则是否存在这样的直线l,使得以B、O、D为顶点的三角形与△ABC相似?若存在,求出该直线的解析式及点D的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,P为抛物线y=
3
4
x2-
3
2
x+
1
4
上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.
题型:不详难度:| 查看答案
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=
1
4
S△ABC;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.