当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线y=(3-m)x2+2(m-3)x+4m-m2的最低点A的纵坐标是3,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C.(1)求抛物线与直线A...
题目
题型:不详难度:来源:
已知抛物线y=(3-m)x2+2(m-3)x+4m-m2的最低点A的纵坐标是3,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C.
(1)求抛物线与直线AB的解析式.
(2)将直线AB绕点O顺时针旋转90°,与x轴交于点D,与y轴交于点E,求sin∠BDE的值.
(3)过B点作x轴的平行线BG,点M在直线BG上,且到抛物线的对称轴的距离为6,设点N在直线BG上,请你直接写出使得∠AMB+∠ANB=45°的点N的坐标.
答案
(1)∵y=(3-m)x2+2(m-3)x+4m-m2的,
∴抛物线的对称轴x=-
b
2a
=-
2(m-3)
2(3-m)
=1.
∵抛物线y=(3-m)x2+2(m-3)x+4m-m2的最低点A的纵坐标是3
∴抛物线的顶点为A(1,3)
∴m2-5m+6=0,
∴m=3或m=2,
∵3-m>0,
∴m<3
∴m=2,
∴抛物线的解析式为:y=x2-2x+4,
直线为y=2x+b.
∵直线y=mx+b经过点A(1,3)
∴3=2+b,
∴b=1.
∴直线AB为:y=2x+1;

(2)令x=0,则y=1,)令y=0,则x=-
1
2

∴B(0,1),C(-
1
2
,0)
将直线AB绕O点顺时针旋转900,设DE与BC交于点F
∴D(1,0),E(0,
1
2
),∠CFD=90°,
∴OB=OD=1OC=
1
2
,∴CD=
3
2

在Rt△BOC中,由勾股定理,得CB=


5
2
,BD=


2

∵CD•OB=CB•DF,
∴DF=
3
5


5

∴由勾股定理,得BF=


5
5

∴Sin∠BDE=
BF
BD
=


5
5


2
=


10
10


(3)如图2,在BG上取一点Q,使AP=QP,
∴∠AQP=45°.
∴∠ANB+∠QAN=∠QAM+∠AMB=45°.
∵∠AMB+∠ANB=45°,
∴∠ANB=∠QAM,
∴△AQN△MQA,
AQ
MQ
=
QN
QA

∵AD=3,OD=1,
∴AP=QP=2,
∴QM=4,AQ=2


2

∵MP=6,
∴MQ=4.
2


2
4
=
QN
2


2

∴QN=2,
∴BN=5.
∴N(5,1);
如图3,在BG上取一点Q,使AP=QP,
∴∠AQP=45°.
∴∠ANB+∠AMB=∠QAM+∠AMB=45°.
∴∠ANB=∠QAM,
∴△AQM△NAM,
AM
MN
=
QM
AM

∵AD=3,OD=1,
∴AP=QP=2,
∴QM=4,BM=7,AQ=2


2

∵MP=6,
∴MQ=4.AM=2


10

2


10
MN
=
4
2


10

∴MN=10,
∴BN=3.
∴N(-3,1);
∴N(-3,1)或(5,1).
核心考点
试题【已知抛物线y=(3-m)x2+2(m-3)x+4m-m2的最低点A的纵坐标是3,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C.(1)求抛物线与直线A】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知:如图,二次函数y=a(x+1)2-4的图象与x轴分别交于A、B两点,与y轴交于点D,点C是二次函数y=a(x+1)2-4的图象的顶点,CD=


2

(1)求a的值.
(2)点M在二次函数y=a(x+1)2-4图象的对称轴上,且∠AMC=∠BDO,求点M的坐标.
(3)将二次函数y=a(x+1)2-4的图象向下平移k(k>0)个单位,平移后的图象与直线CD分别交于E、F两点(点F在点E左侧),设平移后的二次函数的图象的顶点为C1,与y轴的交点为D1,是否存在实数k,使得CF⊥FC1?若存在,求出k的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图所示,已知抛物线的对称轴为直线x=4,该抛物线与x轴交于A、B两点,与y轴交于C点,且A、C坐标为(2,0)、(0,3).
(1)求此抛物线的解析式;
(2)抛物线上有一点P,使以PC为直径的圆过B点,求P的坐标;
(3)在满足(2)的条件下,x轴上是否存在点E,使得△COE与△PBC相似?若存在,求出E的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连接MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO.
(1)试直接写出点D的坐标;
(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连接OP.若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标;
(3)试问在(2)抛物线的对称轴上是否存在一点T,使得
|TO-TB|的值最大?若存在,则求出点T点的坐标;若不存在,则说明理由.
题型:不详难度:| 查看答案
如图,在同一直角坐标系内,如果x轴与一次函数y=kx+4的图象以及分别过C(1,0)、D(4,0)两点且平行于y轴的两条直线所围成的图形ABDC的面积为7.
(1)求k的值;
(2)求过F、C、D三点的抛物线的解析式;
(3)线段CD上的一个动点P从点D出发,以1单位/秒的速度沿DC的方向移动(点P不重合于点C),过P点作直线PQ⊥CD交EF于Q.当P从点D出发t秒后,求四边形PQFC的面积S与t之间的函数关系式,并确定t的取值范围.
题型:不详难度:| 查看答案
小张同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
问:小张如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.