当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图.已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数关系式和点B的坐标;(2)在x轴的正半轴上是否存在...
题目
题型:不详难度:来源:
如图.已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.
(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
答案
(1)把点A(4,0)代入二次函数有:
0=-16+4b+3
得:b=
13
4

所以二次函数的关系式为:y=-x2+
13
4
x+3.
当x=0时,y=3
∴点B的坐标为(0,3).

(2)如图:
作AB的垂直平分线交x轴于点P,连接BP,
则:BP=AP
设BP=AP=x,则OP=4-x,
在直角△OBP中,BP2=OB2+OP2
即:x2=32+(4-x)2
解得:x=
25
8

∴OP=4-
25
8
=
7
8

所以点P的坐标为:(
7
8
,0)
综上可得点P的坐标为(
7
8
,0).
核心考点
试题【如图.已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数关系式和点B的坐标;(2)在x轴的正半轴上是否存在】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图1,在△ABC中,∠A=90°,AB=4,AC=3.M是边AB上的动点(M不与A,B重合),MNBC交AC于点N,△AMN关于MN的对称图形是△PMN.设AM=x.
(1)用含x的式子表示△AMN的面积(不必写出过程);
(2)当x为何值时,点P恰好落在边BC上;
(3)在动点M的运动过程中,记△PMN与梯形MBCN重叠部分的面积为y,试求y关于x的函数关系式;并求x为何值时,重叠部分的面积最大,最大面积是多少?
题型:不详难度:| 查看答案
已知抛物线y=ax2+bx(a≠0)的顶点在直线y=-
1
2
x-1
上,且过点A(4,0).
(1)求这个抛物线的解析式;
(2)设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形OPAB为梯形?若存在,求出点B的坐标;若不存在,请说明理由;
(3)设点C(1,-3),请在抛物线的对称轴确定一点D,使|AD-CD|的值最大,请直接写出点D的坐标.
题型:不详难度:| 查看答案
如图,在梯形ABCD中,ABCD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MNAB,ME⊥AB,NF⊥AB,垂足分别为E,F.
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值;
(3)试判断四边形MEFN能否为正方形?若能,求出正方形MEFN的面积;若不能,请说明理由.
题型:不详难度:| 查看答案
如图所示是二次函数y=-x2+4x图象上的一段,其中0≤x≤4、若矩形ABCD的两个顶点A,B落在x轴上,另外两个顶点C,D落在函数图象上,则矩形ABCD的周长能否恰好为8?若能,请求出C,D两点坐标;若不能,请说明理由.
题型:不详难度:| 查看答案
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本,经试销发现,销售量y(件)与销售单价x(元)存在一次函数关系:y=-x+120.
(1)若商场要想获得800元的利润,则销售单价应是多少元?
(2)若设该商场获得利润为W元,当销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.